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Preamble: 

 The LOCF (Learning Outcomes based Curriculum Framework) committee constituted by 

University Grants Commission (UGC) is pleased to submit its report concerning the syllabi for 

B.A./B.Sc. (Honours) Mathematics and B.A./B.Sc. with Mathematics as a subject. The 

committee discussed the framework of syllabi in its meetings and suggests the implementation 

of these syllabi in the Departments/Schools of Mathematics in Universities/Colleges/Institutes 

based on following facts:  

1. The learning outcomes of each paper are designed so that these may help learners to 

understand the main objectives of studying the course.  
2.  This will enable learners to select elective papers depending on the individual 

inclinations and contemporary requirements.  
3. The objectives of LOCF are to mentally prepare the students to learn Mathematics 

leading to graduate degree with honours in Mathematics or with Mathematics as a 

subject.  
4. These syllabi in Mathematics under CBCS are recommended keeping in view of the 

wide applications of Mathematics in science, engineering, social science, business and 

a host of other areas.  
5. The study of the syllabi will enable the students to be equipped with the state of the art 

of the subject and will empower them to get jobs in technological and engineering fields 

as well as in business, education and healthcare sectors.  
6. The LOCF committee in Mathematics has prepared this draft paying suitable attention 

to objectives and learning outcomes of the papers. These syllabi may be implemented 

with minor modifications with appropriate justifications keeping in view regional, 

national and international context and needs.  
7.  The outcomes of each paper may be modified as per the local requirements.  
8.  The text books mentioned in references are denotative/demonstrative. The divisions of 

each paper in units are specified to the context mentioned in courses. These units will 

help the learners to complete the study of concerned paper in certain periods and 

prepare them for examinations.  
9.  The papers are organized considering the credit load in a particular semester. The core 

papers of general interest are suggested for semesters I to IV. The elective courses and 

advanced courses are proposed for the B.A./B.Sc. (Hons.) students of semesters V & 

VI and the elective courses for the students of B.A./B.Sc. semesters V & VI having 

Mathematics as a subject.  
10.  The mathematics is a vast subject with immense diversity. Hence it is very difficult for 

every student to learn each branch of mathematics, even though each paper has its 

unique importance. ii  Under these circumstances, LOCF in Mathematics suggests a 

number of elective papers along with compulsory papers. A student can select elective 

papers as per her/his needs and interests.  
11.  The committee expects that the papers may be taught using various Computer Algebra 

Systems (CAS) softwares such as Mathematica, MATLAB, Maxima and R to 

strengthen the conceptual understanding and to widen up the horizon of students’ self-

experience.  
12.  The committee of the LOCF in Mathematics expects that the concerned 

departments/colleges/institutes/universities will encourage their faculty members to include 

necessary topics in addition to courses suggested by LOCF committee. It is hoped that the 

needs of all round development in the careers of learners/students will be fulfilled by the 

recommendations of LOCF in Mathematics. 
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SEMESTER-I 

C O R E  C O U R S E - 1  

Course Name: Calculus, Geometry & Differential Equations 

Course Code: BSCHMTMC101 

  

Course Type: Core 

(Theoretical) 

Course Details: CC-1 L-T-P: 5-1-0 

 

Credit: 6 

 

Full Marks: 50 

CA Marks ESE Marks 

Practical Theoretical Practical Theoretical 

…… 10 …… 40 

 
 

Course Learning Outcomes:  
(After the completion of course, the students will have ability to): 

• Understand various kinds of standard functions and graphs, techniques of integrations and 

limits.  

• Learn about real numbers and its basic properties. 

• Understand the concepts on three-dimensional geometry.  

• Understand the genesis of ordinary differential equations. 

• Understand the various techniques of getting exact solutions of solvable first order differential 

equations and linear differential equations of higher order. 

 
Unit -1: Hyperbolic functions, higher order derivatives, Successive differentiation, Leibnitz rule and 
its applications to problems of type 𝑒𝑎𝑥+𝑏𝑠𝑖𝑛𝑥, 𝑒𝑎𝑥+𝑏𝑐𝑜𝑠𝑥, (𝑎𝑥 + 𝑏)𝑛𝑠𝑖𝑛𝑥, (𝑎𝑥 + 𝑏)𝑛𝑐𝑜𝑠𝑥 , 
L’Hospital’s rule. concavity and inflection points, envelopes, asymptotes, Maxima and Minima, 
Curvature, curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves,  
 
Unit-2: Review of Algebraic and Order Properties of ℝ, ε-neighbourhood of a point in ℝ . 
Idea of countable sets, uncountable sets and uncountability of ℝ.. Bounded above sets, 
Bounded below sets, Bounded Sets, Unbounded sets. Suprema and Infima. Completeness 
Property of ℝ and its equivalent properties. The Archimedean Property, Density of Rational 
(and Irrational) numbers in ℝ, Intervals. Limit points of a set, Isolated points, Open set, 
closed set, derived set, Illustrations of Bolzano-Weierstrass theorem for sets, compact sets 
in ℝ, Heine-Borel Theorem. 
  
Unit-3: Reduction formulae, derivations and illustrations of reduction formulae for the integration 
of  sin 𝑛𝑥, 𝑐𝑜𝑠𝑛𝑥, 𝑡𝑎𝑛 𝑛𝑥, 𝑠𝑒𝑐 𝑛𝑥, (𝑙𝑜𝑔 𝑥)𝑛 , sin𝑛 𝑥 sin𝑚 𝑥, parametric equations, parametrizing a 
curve, arc length, arc length of parametric curves, area of surface of revolution. Techniques of 
sketching conics.  
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Unit -4: Reflection properties of conics, translation and rotation of axes and second degree 
equations, classification of conics using the discriminant, Tangent, Normal, pole, polar, Diameter 
and conjugate diameters, Asymptotes.  Polar equations of conics. Spheres. Cylindrical surfaces. 
Central conicoids, paraboloids, plane sections of conicoids, Generating lines, classification of 
quadrics, Illustrations of graphing standard quadric surfaces like cone, ellipsoid.  
 
Unit -5: Differential equations and mathematical models. General, particular, explicit, implicit and 
singular 
solutions of a differential equation. Exact differential equations and integrating factors, separable 
equations and equations reducible to this form, linear equation and Bernoulli equations, special 
integrating factors and transformations.  
 
Graphical Demonstration (Teaching Aid)  
1. Plotting of graphs of function eax + b, log(ax +  b), 1/(ax +  b), sin(ax +  b), cos(ax +

         b), |ax +  b| and to illustrate the effect of a and b on the graph 
2. Plotting the graphs of polynomial of degree 4 and 5, the derivative graph, the second 
derivative      
    graph and comparing them. 
3. Sketching parametric curves (Eg. Trochoid, cycloid, epicycloids, hypocycloid). 
4. Obtaining surface of revolution of curves. 
5. Tracing of conics in Cartesian coordinates/polar coordinates. 
6. Sketching ellipsoid, hyperboloid of one and two sheets, elliptic cone, elliptic paraboloid, 
and   
    hyperbolic paraboloid using Cartesian coordinates 
 
References:  
1. G. B. Thomas and R. L. Finney, Calculus, 9th Ed., Pearson Education, Delhi, 2005.  

2. M. J. Strauss, G. L. Bradley and K. J. Smith, Calculus, 3rd Ed., Dorling Kindersley (India) P. Ltd. 

(Pearson Education), Delhi, 2007.  

3. H. Anton, I. Bivens and S. Davis, Calculus, 7th Ed., John Wiley and Sons (Asia) P. Ltd., Singapore, 

2002.  

4. R. Courant and F. John, Introduction to Calculus and Analysis (Volumes I & II), Springer- Verlag, 

New York, Inc., 1989.  

5. S. L. Ross, Differential Equations, 3rd Ed., John Wiley and Sons, India, 2004.  

6. D. Murray, Introductory Course in Differential Equations, Longmans Green and Co. 1897.  
7. G. F. Simmons, Differential Equations, Tata Mcgraw Hill, 1991.  

8. T. Apostol, Calculus, Volumes I and II. Vol-I, 1966, Vol-II, 1968.  
9. S. Goldberg, Calculus and Mathematical analysis, 1989.  

10. R. K. Ghosh & K. C. Maity, An Introduction to Analysis: Differential Calculus: Part I, New Central 

Book Agency (P) Ltd. Kolkata (India). 

11. D. Sengupta, Application of Calculus, Books and Allied (P) Ltd (1st edition, 2012). 

12. S. Bandyopadhyay and S. K. Maity, Application of Calculus, Academic Publishers (2nd edition, 

2011). 

13. R. M. Khan, Analytical Geometry of Two and Three Dimensions and Vector Analysis, New Central 

Book Agency (2010). 

14. A. Mukherjee and N. K. Bej, Analytical Geometry of Two and Three Dimensions, Books and Allied 

(P) Ltd. (2013). 

15. P. R. Ghosh & J. G. Chakraborty, Differential Equations, U. N. Dhur and Sons Pvt. Ltd. 
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16. R. K. Ghosh and K. C. Maity, Introduction to Differential Equations, New Central Book Agency 

(P) Ltd. 

17. M. D. Raisinghania, Ordinary and Partial Differential Equations, S. Chand & Company Ltd. (18th 

edition).      

C O R E  C O U R S E - 2  

Course Name: Algebra 

Course Code: BSCHMTMC102 
  

Course Type: Core 

(Theoretical) 

Course Details: CC-2 L-T-P: 5-1-0 

 

Credit: 6 

 

Full Marks: 50 

CA Marks ESE Marks 

Practical Theoretical Practical Theoretical 

…… 10 
…… 

40 

 
Course Learning Outcomes:  
(After the completion of course, the students will have ability to): 

 

• Understand the importance of roots of real and complex polynomials and learn various 

methods of obtaining roots. 

• Employ  De Moivre’s theorem in a number of applications to solve numerical problems. 

• Recognize consistent and inconsistent systems of linear equations by the row echelon 

form of the augmented matrix, using rank. 

• Find eigenvalues and corresponding eigenvectors for a square matrix. 

  

Unit -1: Polar representation of complex numbers, n-th roots of unity, De Moivre’s theorem 
for rational indices and its applications.  
Theory of equations: Relation between roots and coefficients, Transformation of equation, 
Descartes rule of signs, Cubic and biquadratic equations. Reciprocal equation, separation of 
the roots of equations, Strum’s theorem.  
Inequality: The inequality involving 𝐴𝑀 ≥ 𝐺𝑀 ≥ 𝐻𝑀, Cauchy-Schwartz inequality 
 
Unit-2: Equivalence relations and partitions, Functions, Composition of functions, Invertible 
functions, One to one correspondence and cardinality of a set. Well-ordering property of 
positive integers, Division algorithm, Divisibility and Euclidean algorithm. Congruence relation 
between integers. Principles of Mathematical Induction, statement of Fundamental Theorem of 
Arithmetic.  
 
Unit -3: Systems of linear equations, row reduction and echelon forms, vector equations, the 
matrix equation 𝐴𝑥 = 𝑏, solution sets of linear systems, applications of linear systems, linear 
independence.  
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Unit -4: Introduction to linear transformations, matrix of a linear transformation, inverse of a 
matrix, characterizations of invertible matrices. Definition and examples of vector spaces and 
subspaces, Vector Spaces  𝑅𝑛 , Subspaces of 𝑅𝑛, dimension of subspaces of 𝑅𝑛 , rank of 
a matrix, Eigen values, Eigen Vectors and Characteristic Equation of a matrix. Cayley-
Hamilton theorem and its use in finding the inverse of a matrix.  
References: 
 1. Titu Andreescu and Dorin Andrica, Complex Numbers from A to Z, Birkhauser, 2006.  

2. Edgar G. Goodaire and Michael M. Parmenter, Discrete Mathematics with Graph Theory, 3rd Ed., 

Pearson Education (Singapore) P. Ltd., Indian Reprint, 2005.  

3. David C. Lay, Linear Algebra and its Applications, 3rd Ed., Pearson Education Asia, Indian Reprint, 

2007.  

4. K. B. Dutta, Matrix and linear algebra, 2004.  

5. K. Hoffman, R. Kunze, Linear algebra, 1971.  

6. W. S. Burnstine and A.W. Panton, Theory of equations, 2007.  

7.  J. G. Chakravorty & P. R. Ghosh, Advanced Higher Algebra, U. N. Dhur & Sons Pvt. Ltd. 

8. A. N. Das, Advanced Higher Algebra, Books & Allied (P) Ltd. 

9. P. K. Nayak, Linear Algebra, Books & Allied (P) Ltd. 

10. S. K. Mapa, Higher Algebra: Classical, Sarat Book House. 

11. S. K. Mapa, Higher Algebra: Abstract and Linear, Sarat Book House. 

SEMESTER-II 

C O R E  C O U R S E - 3  

Course Name: Real Analysis 

Course Code: BSCHMTMC201 
  

Course Type: Core 

(Theoretical) 

Course Details: CC-3 L-T-P: 5-1-0 

 

Credit: 6 

 

Full Marks: 50 

CA Marks ESE Marks 

Practical Theoretical Practical Theoretical 

…… 10 
…… 

40 

 
 

Course Learning Outcomes:  
(After the completion of course, the students will have ability to): 
 

• Understand many properties of the real line R and learn to define sequence in terms of 

             functions from R to a subset of R. 

• Recognize bounded, convergent, divergent, Cauchy and monotonic sequences and to 

calculate their limit superior, limit inferior, and the limit of a bounded sequence. 

• Apply the ratio, root, alternating series and limit comparison tests for convergence 

and absolute convergence of an infinite series of real numbers. 

• Understand the theory and concepts of Riemann integration.  
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• Understand the applications of the fundamental theorems of integration.  

     
  
Unit-1: Limit and Continuity:  - definition of limit of a real valued function, Limit at infinity and 

infinite limits; Continuity of a real valued function, Properties of continuous functions, Intermediate 
value theorem, Geometrical interpretation of continuity, Types of discontinuity; Uniform continuity. 
 
Unit-2: Differentiability:  Differentiability of a real valued function, Geometrical interpretation of 
differentiability, Relation between differentiability and continuity, Differentiability and monotonicity, 
Chain rule of differentiation; Darboux’s theorem, Rolle’s theorem, Lagrange’s mean value theorem, 
Cauchy’s mean value theorem, Geometrical interpretation of mean value theorems; Maclaurin’s and 
Taylor’s theorems for expansion of a function in an infinite series, Taylor’s theorem in finite form with 
Lagrange, Cauchy and Roche–Schlomilch forms of remainder; 
 
Unit-3:Real sequence:  Sequences, Bounded sequence, Convergent sequence, Limit of a 
sequence, Limit Theorems. Monotone Sequences, Monotone Convergence Theorem. 
Subsequences, Divergence Criteria. Monotone Subsequence Theorem (statement only), 
Bolzano Weierstrass Theorem for Sequences. Limit superior and Limit inferior of a sequence 
of real numbers, Cauchy sequence, Cauchy’s Convergence Criterion.  
 
Unit-4:Series:  Infinite series, convergence and divergence of infinite series, Cauchy Criterion, 
Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy’s nth 
root test, Raabe’s test, Gauss test, Cauchy condensation test, Integral test. Alternating series, 
Leibniz test. Absolute and Conditional convergence.  
 
Unit-5: Riemann Integration: Riemann integral, Integrability of continuous and monotonic functions, 

Fundamental theorem of integral calculus, First mean value theorem, Bonnet and Weierstrass forms 
of second mean value theorems.  
 
Unit-6: Uniform convergence and Improper integral: Pointwise and uniform convergence of 
sequence and series of functions, Weierstrass’s M-test, Dirichlet test and Abel’s test for uniform 
convergence, Uniform convergence and continuity, Uniform convergence and differentiability, 
Improper integrals, Dirichlet test and Abel’s test for improper integrals. 
 
Graphical Demonstration (Teaching Aid)  
1. Plotting of recursive sequences. 
2. Study the convergence of sequences through plotting. 
3. Verify Bolzano-Weierstrass theorem through plotting of sequences and hence identify 
convergent   
     subsequences from the plot. 
4. Study the convergence/divergence of infinite series by plotting their sequences of partial 
sum. 
5. Cauchy's root test by plotting nth roots. 
6. Ratio test by plotting the ratio of 𝑛𝑡ℎ and (𝑛 + 1)𝑡ℎ term. 
 
 
References:  
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1.R. G. Bartle and D. R. Sherbert, Introduction to Real Analysis, 3rd Ed., John Wiley and Sons (Asia) 

Pvt. Ltd., Singapore, 2002.  

2. Gerald G. Bilodeau, Paul R. Thie, G.E. Keough, An Introduction to Analysis, 2nd Ed., Jones & 

Bartlett, 2010.  

3. Brian S. Thomson, Andrew. M. Bruckner and Judith B. Bruckner, Elementary Real Analysis, Prentice 

Hall, 2001.  

4. S. K. Berberian, a First Course in Real Analysis, Springer Verlag, New York, 1994.  

5. Tom M. Apostol, Mathematical Analysis, Narosa Publishing House, 1981.  

6. Courant and John, Introduction to Calculus and Analysis, Vol I, Springer, 1999.  

7. W. Rudin, Principles of Mathematical Analysis, Tata McGraw-Hill, 1953.  

8. Terence Tao, Analysis I, Hindustan Book Agency, 2006  

9. S. Goldberg, Calculus and mathematical analysis, 1989.  

10. S. K. Mukherjee, First Course in Real Analysis, Academic Publishers. 

11. S. Bandyopadhyay & B. Guhathakurta, Mathematical Analysis, Academic Publishers. 

12. R. K. Ghosh & K. C. Maity, An Introduction to Analysis: Differential Calculus: Part I, New Central 

Book Agency (P) Ltd. Kolkata (India). 

13. S. N. Mukhopadhyay & A. K. Layek, Mathematical Analysis Volume-I, U. N. Dhur & Sons Pvt. 

Ltd. 

14. B. K. Kar (2013), An Introduction to Modern Analysis (Volume I), Books & Allied Ltd. 

15. S. C. Malik and S. Arora, Mathematical Analysis, New Age International (P) Ltd publishers (3rd 

edition, 2009). 

16. S. K. Mapa, Real Analysis, Sarat Book Distributors (5th edition, 2008). 

17. Shanti Narayan & M. D. Raisinghania, Elements of Real Analysis, S. Chand & Company Ltd. (14th 

edition, 2013). 

 

C O R E  C O U R S E - 4  

Course Name: Differential Equations and Vector Calculus  

Course Code: BSCHMTMC202  
 Course Type: Core 

(Theoretical) 

Course Details: CC-4 L-T-P: 5-1-0 

 

Credit: 6 

 

Full Marks: 50 

CA Marks ESE Marks 

Practical Theoretical Practical Theoretical 

…… 10 …… 40 

 
Course Learning Outcomes:  
(After the completion of course, the students will have ability to): 

 

• Learn the Picard’s method of obtaining successive approximations of solutions of first order 

ordinary differential equations. 

• Know how to solve linear homogeneous and non-homogeneous equations of higher order 

with constant coefficients. 

• Understand the system of linear differential equations and the solution techniques.  
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• Learn conceptual differences between usual solution and power series solution of some second 

order ODEs .  

• Understand the theory and applications of vector analysis.     

 

Unit-1: Lipschitz condition and Picard’s Theorem (Statement only).Existence and uniqueness 
of the solution of first and second order ODE, General solution of homogeneous equation of 
second order, principle of super position for homogeneous equation, Wronskian: its properties 
and applications, Linear homogeneous and non-homogeneous equations of higher order with 
constant coefficients, Euler’s equation, method of undetermined coefficients, method of variation 
of parameters. Reduction of order of ODE and solution. 
 
Unit -2: Systems of linear differential equations, types of linear systems, differential operators, 
an operator method for linear systems with constant coefficients, Matrix Method. Basic Theory 
of linear systems in normal form, homogeneous linear systems with constant coefficients: Two 
Equations in two unknown functions.  
 
Unit-3: Equilibrium points, Interpretation of the phase plane and phase portrait.its Rough 
sketching, Power series solution of a differential equation about an ordinary point, solution 
about a regular singular point. Legendre’s equation, its solution, polynomial, Rodrigues formula, 
orthgonality,  Frobenius method, Bessel’s equation, Bessel functions and their properties, its 
recurrence relations. 
 
Unit- 4: Triple product, introduction to vector functions, operations with vector-valued functions, 
limits and continuity of vector functions, vector equations and its simple applications, 
differentiation and integration of vector functions. Differential operators.  
 
Graphical Demonstration (Teaching Aid) :  
1. Plotting of family of curves which are solutions of second order differential equation. 
2. Plotting of family of curves which are solutions of third order differential equation. 
 
References:  

1. Belinda Barnes and Glenn R. Fulford, Mathematical Modeling with Case Studies, A Differential 

Equation Approach using Maple and Matlab, 2nd Ed., Taylor and Francis group, London and New 

York, 2009.  

2. C. H. Edwards and D. E. Penny, Differential Equations and Boundary Value problems Computing 

and Modeling, Pearson Education India, 2005.  

3. S. L. Ross, Differential Equations, 3rd Ed., John Wiley and Sons, India, 2004.  

4. Martha L Abell, James P Braselton, Differential Equations with MATHEMATICA, 3rd Ed., Elsevier 

Academic Press, 2004.  

5. D. Murray, Introductory Course in Differential Equations, Longmans Green and Co, 1897.  

6. Boyce and Diprima, Elementary Differential Equations and Boundary Value Problems, Wiley, 2012.  

7. G. F. Simmons, Differential Equations, Tata McGraw Hill, 1991.  

8. J. Marsden & Tromba, Vector Calculus, McGraw Hill, 1987.  

9. K. C. Maity & R. K. Ghosh, Vector Analysis, New Central Book Agency (P) Ltd. Kolkata (India), 

1999.  
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10. M. R. Speigel, Schaum’s outline of Vector Analysis, McGraw Hill, 1980.  

11. M. D. Raisinghania, Advanced Differential Equations, S. Chand Publishing, 2018. 

12. J. G. Chakravorty and P. R. Ghosh, Differential Equations, U. N. Dhur & Sons Private Ltd. 

13. R. K. Ghosh and K. C. Maity, Introduction to Differential Equations, New Central Book Agency 

(P) Ltd. 

14. N. Mandal & B. Pal, Differential Equations (Ordinary and Partial), Books & Allied Ltd. 

15. J. G. Chakravorty & P. R. Ghosh, Vector Analysis, U. N. Dhur & Sons Private Ltd (10th edition, 

2010). 

16. Shanti Narayan & P. K. Mittal, A Textbook of Vector Calculus, S. Chand & Company Ltd. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SEMESTER- III 

 C O R E  C O U R S E - 5  

Course Name: Multivariable Calculus 

Course Code: BSCHMTMC301   
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Course Type: Core 

(Theoretical) 

Course Details: CC-5 L-T-P: 5-1-0 

 

Credit: 6 

 

Full Marks: 50 

CA Marks ESE Marks 

Practical Theoretical Practical Theoretical 

…… 10 …… 40 

 
Course Learning Outcomes: This course will enable the students to 

• Learn conceptual differences while advancing from one variable to several variables in 

calculus. 

•  Apply multivariable calculus in various optimization problems. 

• Understand inter-relationship amongst the line integral, double and triple integral formulations. 

•  Visualise the structure of curves and surfaces in plane and space etc. 

• Learn the applications of multivariable calculus in different fields like Physics, Economics, 
Medical Sciences, Animation & Computer Graphics etc. 

• Realize importance of Green, Gauss and Stokes’ theorems in other branches of Mathematics. 

 

[Prerequisites: Concepts of limit, continuity and differentiability in single variable, Sequences, 

Sequential criteria for limit and continuity in one variable.]  

 

Unit-I: Limit, Continuity and Partial Differentiation 

Functions of several variables, Level curves and surfaces, Limits and continuity of functions of several 

variables, Partial differentiation, Linear approximation and tangent planes, Chain rule, Directional 

derivatives, The gradient, Maximal and normal properties of the gradient, Tangent planes and normal 

lines. 

 

Unit-II: Differentiability and Total Differentiation 

Higher order and mixed partial derivatives, Total differential and differentiability, Sufficient condition 

for differentiability, Jacobians, Change of variables, Implicit function theorem, Functional dependence, 

Inverse function theorem, Euler’s theorem for homogeneous functions, Taylor’s theorem for functions 

of several variables, Envelopes and evolutes. 

 

Unit-III: Extrema of Functions and Vector Field 

Critical points and extrema of functions of two and more variables, Local extrema and absolute extrema, 

Constrained optimization problems, Method of Lagrange multipliers with various applications, 

Definition of vector field, Vector operators such as divergence, curl, gradient and the related vector 

identities. 

 

Unit-IV: Double and Triple Integrals 

Double integration over rectangular and nonrectangular regions, Double integrals in polar coordinates, 

Triple integral over a parallelepiped and solid regions, Volume by triple integrals, Triple integration in 

cylindrical and spherical coordinates, Change of variables in double and triple integrals, Dirichlet 
integral. 

 

Unit-V: Green's, Stokes' and Gauss Divergence Theorem 

Line integrals, Applications of line integrals: Mass and Work done, Fundamental theorem for line 

integrals, Path independence, Conservative vector fields, Green's theorem, Area as a line integral, 

Surface integrals, Integrals over parametrically defined surfaces, Stokes' theorem, Volume as a surface 

integral, Gauss divergence theorem. 

 

References: 

1. Jerrold Marsden, Anthony J. Tromba & Alan Weinstein (2009), Basic Multivariable Calculus, 

Springer India Pvt. Limited. 
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2. James Stewart (2012). Multivariable Calculus (7th edition), Brooks/Cole, Cengage. 

3. Monty J. Strauss, Gerald L. Bradley & Karl J. Smith (2011), Calculus (3rd edition), Pearson 

Education, Dorling Kindersley (India) Pvt. Ltd. 

4. George B. Thomas Jr., Joel Hass, Christopher Heil & Maurice D. Weir (2018), Thomas’ Calculus 

(14th edition), Pearson Education. 

5.  Sudhir R. Ghorpade & Balmohan V. Limaye (2009), A Course in Multivariable Calculus and 
Analysis, Springer. 

6. Terence Tao (2015), Analysis II (3rd edition), Hindustan Book Agency.  

7.  Susan Jane Colley (2012), Vector Calculus (4th edition), Pearson Education. 

8. R. K. Ghosh & K. C. Maity, An Introduction to Analysis: Differential Calculus: Part I, New Central 

Book Agency (P) Ltd. Kolkata (India). 

9.  B. K. Kar (2013), An Introduction to Modern Analysis (Volume I), Books & Allied Ltd. 

10. Subir Kumar Mukherjee (2019), Advanced Differential Calculus of Several Variables (5th edition), 

Academic Publishers. 

C O R E  C O U R S E - 6  

Course Name: Group Theory   

Course Code: BSCHMTMC302   
  

Course Type: Core 

(Theoretical) 

Course Details: CC-6 L-T-P: 5-1-0 

 

Credit: 6 

 

Full Marks: 50 

CA Marks ESE Marks 

Practical Theoretical Practical Theoretical 

…… 10 
…… 

40 

 
Course Learning Outcomes: The course will enable the students to: 

• Recognize the mathematical objects called groups. 

•  Link the fundamental concepts of groups and symmetries of geometrical objects. 

• Explain the significance of the notions of cosets, normal subgroups, and factor groups. 

• Analyze consequences of Lagrange’s theorem. 

•  Learn about structure preserving maps between groups and their consequences. 

 

Unit-1:  Binary Compositions ;  Semigroups  , Monoids ,Groups  : Examples & elementary Properties 

;Abelian group ; Permutations ;  Finite groups :  symmetric group, alternating group ,Klein’s 4-group  

,group of all n-th roots of unity , etc. ; Examples of infinite groups ;Order of an element  . 

 

Unit-2: Subgroups : definitions ,examples and elementary properties ;Centre of a group ; Centraliser of 

an element in a group ;Cyclic groups : definitions ,examples and elementary properties ;Properties of 

Cosets; Lagrange’s theorem . 

 

Unit-3: Normal Subgroups and their properties ;Simple group ;Normaliser of a subgroup;Self-

conjugate subgroup ; Quotient group ;Conjugacy relation in a group ; Class equation of a group . 
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Unit-4: Homomorphisms ,monomorphisms , epimorphisms ,isomorphisms : definitions ,examples and 

their  elementary properties ;Caley’s theorem on isomorphism  ; First ,second and third isomorphism 

theorems ;Automorphism ; Inner automorphism ; 

 

References: 

1. Michael Artin (2014). Algebra (2nd edition). Pearson. 

2. John B. Fraleigh (2007). A First Course in Abstract Algebra (7th edition). Pearson. 

3. Joseph A. Gallian (2017). Contemporary Abstract Algebra (9th edition). Cengage. 

4. I. N. Herstein (2006). Topics in Algebra (2nd edition). Wiley India. 

5. Nathan Jacobson (2009). Basic Algebra I (2nd edition). Dover Publications 

6. Ramji Lal (2017). Algebra 1: Groups, Rings, Fields and Arithmetic. Springer . 

7. I.S. Luthar & I.B.S. Passi (2013). Algebra: Volume 1: Groups. Narosa. 
 

C O R E  C O U R S E - 7  

Course Name: Probability and Statistics 

Course Code: BSCHMTMC303  

  

Course Type: Core  Course Details: CC-7 L-T-P: 5-1-0 

 

Credit: 6 

 

Full Marks: 50 

CA Marks ESE Marks 

Practical Theoretical Practical Theoretical 

… 10 
……. 

40 

 
Course Learning Outcomes:  

(After the completion of course, the students will have ability to): 

 

• Understand distributions in the study of the joint behaviour of two random variables. 

• Establish a formulation helping to predict one variable in terms of the other that is correlation 

and linear regression. 

• Understand central limit theorem, which establish the remarkable fact that the empirical 

frequencies of so many natural populations, exhibit a bell shaped curve. 

 

Unit-1: Basic notions of probability, Conditional probability and independence, Baye’s theorem; 

Random variables - Discrete and continuous, Cumulative distribution function, Probability 

mass/density functions; Transformations, Mathematical expectation, Moments, Moment generating 

function, Characteristic function. 

 

Unit-2: Discrete distributions: Uniform, Bernoulli, Binomial, Negative binomial, Geometric and 

Poisson; Continuous distributions: Uniform, Gamma, Exponential, Chi-square, Beta and normal; 

Normal approximation to the binomial distribution. 

 

Unit-3: Joint cumulative distribution function and its properties, Joint probability density function, 

Marginal distributions, Expectation of function of two random variables, Joint moment 

generating function, Conditional distributions and expectations. 
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Unit-4:  The Correlation coefficient, Covariance, Calculation of covariance from joint moment 

generating function, Independent random variables, Linear regression for two variables, The method of 

least squares, Bivariate normal distribution, Chebyshev’s theorem, Strong law of large numbers, Central 

limit theorem and weak law of large numbers. 

 

 

References: 

1. Robert V. Hogg, Joseph W. McKean and Allen T. Craig, Introduction to Mathematical 

Statistics, Pearson Education, Asia, 2007. 

2. Irwin Miller and Marylees Miller and John E. Freund, Mathematical Statistics with 

Applications, 7th Ed. Pearson Education, Asia, 2006. 

3. Sheldon Ross, Introduction to Probability Models, 9th Ed., Academic Press, Indian Reprint, 

2007. 

4. Alexander M. Mood, Franklin A. Graybill and Duane C. Boes, Introduction to the Theory of 

Statistics, 3rd Ed., Tata McGraw- Hill, Reprint 2007 

5. A. Gupta, Ground work of Mathematical Probability and Statistics, Academic publishers, 
1983. 

6. S.C. Gupta  and V. K. Kapoor, Fundamentals of Mathematical Statistics, Sultan, Chand & 

Sons, 1989. 

7. A. P. Baisnab and M. Jas,  Elements of Probability and Statistics, McGraw Hill Education 

India, 2017.  

8. Arup Mukherjee, Fundamental treatise on Probability and Statistics, Shreetara Prakashani, 

2014. 

S K I L L  E N H A N C E M E N T  C O U R S E - 1  

                                            (Choose any one from the following) 

 

Course Name: Mathematical Logic 

Course Code: BSCHMTMSE301 

  

Course Type: SE Course Details: SEC-1  L-T-P: 4-0-0 

 

Credit: 4 

 

Full Marks: 50 

CA Marks ESE Marks 

Practical Theoretical Practical Theoretical 

…… 10 
       ....... 

40 

Course Learning Outcomes:  
(After the completion of course, the students will have ability to): 

 

• Understand the syntax of first-order logic and semantics of first-order languages  

• Understand about truth table, different propositions, predicates and quantifiers, basic Theorems 

like the Compactness Theorem, Meta Theorem and Post Tautology Theorem. 

• Grasp the concept of completeness interpretations and their applications with special stress on 

applications in Algebra. 
 

Unit -1: First-order languages, Terms of language, Formulas of language, First order theory. 
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Unit -2: Structures of first order languages, Truth in a structure, Model of a theory, 

Embeddings and  isomorphism. 

 
Unit -3: Introduction, propositions, truth table, negation, conjunction and disjunction. Implications, 
biconditional propositions, converse, contra positive and inverse propositions and precedence 
of logical operators. Propositional equivalence: Logical equivalences. Predicates and quantifiers: 
Introduction, Quantifiers, Binding variables and Negations. 

Unit -4: Proof in first-order logic, Meta theorems in first-order logic, Some meta 

theorem in arithmetic, Consistency and completeness. 

Unit -5: Completeness theorem, Interpretation in a theory, Extension by definitions, 

Compactness theorem and applications, Complete theories, Applications in algebra. 

 

Reference: 

 
1. Richard E. Hodel , An Introduction to Mathematical Logic, Dover Publications, 2013  
2. Yu I. Manin , A Course in Mathematical Logic for Mathematicians, Springer, 2nd 

Edition, 2010  
3. Elliot Mendelson , Introduction to Mathematical Logic, Chapman & Hall/CRC, 6th Edition, 

2015 
4. Shashi Mohan Srivastava, A Course in Mathematical Logic, Springer, 2nd Edition, 

Springer, 2013 
5. R.P. Grimaldi, Discrete Mathematics and Combinatorial Mathematics, Pearson Education, 1998  

 

Course Name: Programming Language in C 

Course Code: BSCHMTMSE302   

  

Course Type: SE Course Details: SEC-1  L-T-P: 4-0-0 

 

Credit: 4 

 

Full Marks: 50 

CA Marks ESE Marks 

Practical Theoretical Practical Theoretical 

…… 10 
       ....... 

40 

 
 

Course Learning Outcomes:  
(After the completion of course, the students will have ability to): 

• Acquire knowledge of different computer languages.  

• Understand basic structure, characters, keywords, identifiers, data types, operators, 

expressions, etc. in C language. 

• Write flow chart and corresponding C-program for solving problems requiring decision 

making, branching, looping and other control statements. 

• Learn to implement arrays and functions in C programming. 

• Familiarise with the concepts of structure, union and pointers.    
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Unit-1: An overview of theoretical computers, history of computers, overview of architecture of 

computer, compiler, assembler, machine language, high level language, object-oriented language, 

programming language and importance of C programming. 

 

Unit-2:  Constants, Variables and Data type of C-Program: Character set. Constants and variables 

data types, expression, assignment statements, declaration. Operation and Expressions: Arithmetic 

operators, relational operators, logical operators. 

 

Unit-3: Decision Making and Branching: decision making with if statement, if-else statement, 

Nesting if statement, switch statement, break and continue statement. Control Statements: While 

statement, do-while statement, for statement. 

 

Unit-4: Arrays and Functions: One Dimensional Arrays: Array Manipulation; Searching, 

Insertion, Deletion of an element from an Array; Finding the largest / smallest element in an 

Array; Two Dimensional Arrays: Addition and Multiplication of two matrices, Transpose of a 

square matrix, representation of Sparse matrices.   

 

Unit-5: Functions: Elements of User-Defined Functions, Definition of Functions, Return Values 

and their Types, Function Calls: call by value, call by reference, Function Declaration, Category of 

Functions, Nesting of Functions, Recursion, Passing Arrays to Functions, Scope of variables. 

 

Unit-6: Structures, Unions and Pointers: Structure variables, Initialization, Structure 

Assignment, Structures and Functions, Structures and Arrays, Unions. Pointers: Address 

operators, Pointer Type Declaration, Pointer Assignment, Pointer Initialization, Pointer 

Arithmetic. 

References: 

1. B. W. Kernighan and D. M. Ritchi: The C-Programming Language, 2nd Edi. (ANSI Refresher), 

Prentice Hall, 1977. 

2.  E. Balagurnsamy: Programming in ANSI C, Tata McGraw Hill, 2004. 

3. Y. Kanetkar: Let Us C; BPB Publication, 1999. 

4. C. Xavier: C-Language and Numerical Methods, New Age International. 

5. V. Rajaraman: Computer Oriented Numerical Methods, Prentice Hall of India, 1980. 

 

 

 
 
 
 
 
 
 
 

SEMESTER IV 

C O R E  C O U R S E - 8  

Course Name: Mechanics  
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Course Code: BSCHMTMC401   

  

Course Type: C Course Details: CC-8  L-T-P: 5-1-0 

 

Credit: 6 

 

Full Marks: 50 

CA Marks ESE Marks 

Practical Theoretical Practical Theoretical 

…… 10 
       ....... 

40 

Course Learning Outcomes: This course will enable the students to: 

• Familiarize with subject matter, which has been the single centre, to which were drawn 

mathematicians, physicists, astronomers, and engineers together. 

• Understand necessary conditions for the equilibrium of particles acted upon by various forces 

and learn the principle of virtual work for a system of coplanar forces acting on a rigid body.  

• Determine the centre of gravity of some materialistic systems and discuss the equilibrium of a 

uniform cable hanging freely under its own weight.  

• Deal with the kinematics and kinetics of the rectilinear and planar motions of a particle 

including the constrained oscillatory motions of particles.  

•  Learn that a particle moving under a central force describes a plane curve and know the 

Kepler’s laws of the planetary motions, which were deduced by him long before the 

mathematical theory given by Newton. 

 

 Unit-I: Statics: Force and Couple, Resultant force and Resultant Couple, Varignon’s  theorem, 

Equilibrium of a particle, Equilibrium of a system of particles, Necessary conditions of equilibrium, 

Moment of a force about a point, Moment of a force about a line, Moment of a couple, Astatic 

equilibrium, Equipollent system of forces, Work and potential energy, Principle of virtual work for a 

system of coplanar forces acting on a particle or at different points of a rigid body, Forces which can be 

omitted in forming the equations of virtual work.  

 

Unit-II: Centres of Gravity and Common Catenary:  Centres of gravity of plane area including a 

uniform thin straight rod, triangle, circular arc, semi-circular area and quadrant of a circle, Centre of 

gravity of a plane area bounded by a curve, Centre of gravity of a volume of revolution; Flexible strings, 

Common catenary, Intrinsic and Cartesian equations of the common catenary, Approximations of the 

catenary. 

 

 Unit-III: Rectilinear Motion: Simple harmonic motion (SHM) and its geometrical representation, 

Damped and forced vibrations, SHM under elastic forces, Motion under inverse square law, Motion in 

resisting media, Concept of terminal velocity. 

 

Unit-IV: Motion in a Plane:  Kinematics and kinetics of the motion, Expressions for velocity and 

acceleration in Cartesian, polar and intrinsic coordinates; Motion in a vertical circle, projectiles in a 

resisting medium, Tangential and Normal equations of motion, cycloidal motion etc.  

 

Unit-V: Central Orbits:  Equation of motion under a central force, Differential equation of the orbit, 

(p, r) equation of the orbit, Apses and apsidal distances, Areal velocity, Characteristics of central orbits, 

Stability of nearly circular orbits, Kepler’s laws of planetary motion. 

  

References: 
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1. S. L. Loney (2006). An Elementary Treatise on the Dynamics of a Particle and of Rigid 

Bodies. Read Books.  

2. P. L. Srivatava (1964). Elementary Dynamics. Ram Narin Lal, Beni Prasad Publishers 

Allahabad. 

3. J. L. Synge & B. A. Griffith (1949). Principles of Mechanics. McGraw-Hill. 

4. A. S. Ramsey (2009). Statics. Cambridge University Press.  

5. A. S. Ramsey (2009). Dynamics. Cambridge University Press.  

6. R. S. Varma (1962). A Text Book of Statics. Pothishala Pvt. Ltd. 

7. Gregory I.H. Shames and G. Krishna Mohan Rao, Engineering Mechanics: Statics and 

Dynamics, 2006. Dorling Kindersley (India) Pvt. Ltd. (Pearson Education), Delhi, 2009.  

8. R.C. Hibbeler and Ashok Gupta, Engineering Mechanics: Statics and Dynamics, 11th Ed., 

Dorling Kindersley (India) Pvt. Ltd. (Pearson Education), Delhi, 2010. 

 9. Chorlton, F., Textbook of Dynamics CBS Publishers & Distributors, 2005.  

10. Loney, S. L., Elements of Statics and Dynamics I and II, 2004  

11. Nayak, P.K., A Text Book of Mechanics, Alpha-Science.  

12. Ghosh, M. C, Analytical Statics. 

 13. Matiur Rahman, Md., Statics, New Central Book Agancy (P) Ltd, 2004.  

14. Rana and Joag, Classical Mechanics, McGraw Hill Edu(India) Private Ltd. 

15. S.A. Mollah, Analytical Statics, Books and Allied (P)Ltd 

16. Ganguly and Saha, Analytical Dynamics of a particle including Elementary statics, New 

Central Book Agency (P) Ltd. 

17. M.D.Raisinghania, Dynamics, S Chan and company Ltd. 

C O R E  C O U R S E - 9  

Course Name: Linear Algebra 

Course Code: BSCHMTMC402   

  

Course Type: C Course Details: CC-9  L-T-P: 5-1-0 

 

Credit: 6 

 

Full Marks: 50 

CA Marks ESE Marks 

Practical Theoretical Practical Theoretical 

…… 10 
       ....... 

40 

 
Course Learning Outcomes: This course will enable the students to: 

• Understand the concepts of vector spaces, subspaces, bases, dimension and their properties. 

• Relate matrices and linear transformations, compute eigen values and eigen vectors of linear 

transformations. 

• Learn properties of inner product spaces and determine orthogonality in inner product spaces. 

• Realise the importance of adjoint of a linear transformation and its canonical form. 

 

Unit-I: Vector Spaces 

Definition and examples, Subspace, Linear span, Quotient space and direct sum of subspaces,Linearly 

independent and dependent sets, Bases and dimension. 
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Unit-II: Linear Transformations 

 Algebra of linear transformations, Matrix of a composite & inverse linear transformation, Change of 

coordinates, Rank and nullity of a linear transformation and rank-nullity theorem. 

 

Unit-III: Further Properties of Linear Transformations 

Isomorphism of vector spaces, Isomorphism theorems, Dual and second dual of a vector space, 

Transpose of a linear transformation, Eigen vectors and eigen values of a linear transformation, 

Characteristic polynomial and Cayley-Hamilton theorem, Minimal polynomial. 

 

Unit-IV: Inner Product Spaces 

Inner product spaces and orthogonality, Cauchy-Schwarz inequality, Gram-Schmidt orthogonalisation, 

Diagonalisation of symmetric matrices. 

 

Unit-V: Adjoint of a Linear Transformation and Canonical Forms 

Adjoint of a linear operator; Hermitian, unitary and normal linear transformations; Jordan canonical 

form, Triangular form, Trace and transpose, Invariant subspaces. 
 

References : 

1. Stephen H. Friedberg, Arnold J. Insel & Lawrence E. Spence (2003). Linear Algebra (4thedition). 

Prentice-Hall of India Pvt. Ltd. 

2. Serge Lang (2005). Introduction to Linear Algebra (2nd edition). Springer India. 

3. Gilbert Strang (2014). Linear Algebra and its Applications (2nd edition). Elsevier. 

4. Kenneth Hoffman & Ray Kunze (2015). Linear Algebra (2nd edition). Prentice-Hall. 

5. Nathan Jacobson (2009). Basic Algebra I & II (2nd edition). Dover Publications. 

6. S. Kumaresan, Linear Algebra- A Geometric Approach, Prentice Hall of India, 1999. 

7. Vivek Sahai & Vikas Bist (2013). Linear Algebra (2nd Edition). Narosa Publishing House. 

8. Mapa, Higher Algebra(Abstract and linear), Sarat Book Distributors.   

C O R E  C O U R S E - 1 0  

Course Name: Partial Differential Equations and Calculus of Variations   

Course Code: BSCHMTMC403   

  

Course Type: C Course Details: CC-10  L-T-P: 5-1-0 

 

Credit: 6 

 

Full Marks: 50 

CA Marks ESE Marks 

Practical Theoretical Practical Theoretical 

…… 10 
       ....... 

40 

 
 

Course Learning Outcomes:  
(After the completion of course, the students will have ability to): 
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• Understand the geometric and physical nature of Partial Differential Equations and classify 

them accordingly. 

• Apply a range of techniques to solve first & second order partial differential equations. 

• Model physical phenomena using partial differential equations such as the heat and wave 

equations. 

• Understand problems, methods and techniques of calculus of variations. 

 

First Order Partial Differential Equations 

Unit-1: Partial Differential Equations (PDEs) – Basic concepts and Definitions, Order and 

Degree. First-Order Equations: Classification, Construction and Geometrical Interpretation. 

The Cauchy Problem for a First-Order PDEs and the statement of Kowalewski theorem. 

Lagrange method of characteristics for obtaining general solution of quasi-linear PDEs. 

Integral surfaces passing through a given curve. Surfaces orthogonal to a given system of 

surfaces.  

 

Unit-2: Geometric Interpretation of First order non-linear PDEs and Cauchy’s Method of 

Characteristics. Compatible system of First order PDEs (statement) and problems. Canonical 

Forms of First-order Linear Equations. Solution of first order partial differential equations by 

Charpit’s general method. Some special type of equation which can be solved easily by 

methods other than the general method. Method of Separation of Variables for solving first 

order PDEs. 

 

Second and Higher Order Partial Differential Equations 

Unit-3: Origin and applications of second and higher order PDEs. Classification of second 

order PDE. Reduction of Second order PDE with constant or variable coefficients to 

canonical/normal form. Methods to find the general solution of homogeneous and non-

homogeneous linear PDEs with constant coefficients.  

 

Unit-4: Derivation of Wave Equation and Heat Equation in One-dimension. Method of 

separation of variables: Solving the Wave equation and Heat Equation in One-dimension. 

D’Alembert’s Solution of the Wave Equation and its Physical Interpretation 
 

Unit-5: Calculus of Variations-Variational Problems with Fixed Boundaries 

Euler’s equation for functional containing first order and higher order total derivatives, 

Functionals containing first order partial derivatives, Variational problems in parametric form, 

Invariance of Euler’s equation under coordinates transformation. 

Unit-6: Calculus of Variations-Variational Problems with Moving Boundaries 

Variational problems with moving boundaries, Functionals dependent on one and two 

variables, One sided variations. Sufficient conditions for an extremum-Jacobi and Legendre 

conditions, Second variation. 

Graphical Demonstration  
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1. Solution of Cauchy problem for first order PDE. 
2. Finding the characteristics for the first order PDE. 
3. Plot the integral surfaces of a given first order PDE with initial data. 

4. Solution of the equation 𝜕2𝑢

𝜕𝑡2 −
𝜕2𝑢

𝜕𝑥2  = 0 for the following associated conditions: 
a) 𝑢(𝑥, 0)  = ∅(𝑥), 𝑢𝑡  (𝑥, 0)  = 𝜓(𝑥), 𝑥 ∈ 𝑅, 𝑡 > 0. 
b) 𝑢(𝑥, 0) = ∅(𝑥), 𝑢𝑡  (𝑥, 0)  = 𝜓(𝑥), 𝑢(0, 𝑡)  = 0 𝑥 ∈ (0,∞), 𝑡 > 0 

5. Solution of the equation 𝜕2𝑢

𝜕𝑡2 − 𝑐2 𝜕2𝑢

𝜕𝑥2  = 0 for the following associated conditions: 
a) 𝑢(𝑥, 0) = ∅(𝑥), 𝑢𝑡  (0, 𝑡) = 𝑎, 𝑢 (𝑙, 𝑡) = 𝑏, 0 <  𝑥 <  𝑙, 𝑡 > 0. 

b) 𝑢(𝑥, 0) = ∅(𝑥), 𝑥 ∈ 𝑅, 0 <  𝑡 <  𝑇. 

References: 

1. Ian N. Sneddon (2006). Elements of Partial Differential Equations. Dover Publications. 
2. A. S. Gupta (2004). Calculus of Variations with Applications. PHI Learning. 
3. TynMyint-U & Lokenath Debnath (2013). Linear Partial Differential Equation for Scientists and 

Engineers (4th edition). Springer India. 
4. S. J. Farlow (1993). Partial differential equations for scientists and engineers. Courier Corporation. 
5. Erwin Kreyszig (2011). Advanced Engineering Mathematics (10th edition). Wiley. 
6. M. D. Raisinghania (2018). Advanced Differential Equations. S. Chand Publishing. 

S K I L L  E N H A N C E M E N T  C O U R S E - 2  

                                             (Choose any one from the following)  

Course Name: Graph Theory 

Course Code: BSCHMTMSE401   

  

Course Type: SE Course Details: SEC-2  L-T-P: 4-0-0 

 

Credit: 4 

 

Full Marks: 50 

CA Marks ESE Marks 

Practical Theoretical Practical Theoretical 

…… 10 
       ....... 

40 

 
 

Course Learning Outcomes:  
(After the completion of course, the students will have ability to): 

• Appreciate the definition and basics of graphs along with types and their examples.  

• Understand the Eulerian circuits, Eulerian graphs, Hamiltonian cycles, representation of a 
graph by matrix.  

• Relate the graph theory to the real-world problems 

 

 
Unit -1: Definition, examples and basic properties of graphs, pseudo graphs, complete graphs, 
bipartite graphs isomorphism of graphs.  
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Unit -2: Eulerian circuits, Eulerian graph, semi-Eulerian graph and theorems, Hamiltonian 
cycles and theorems. Representation of a graph by a matrix, the adjacency matrix, incidence 
matrix, weighted graph,  
 
Unit -3: Travelling salesman’s problem, shortest path, Tree and their properties, spanning 
tree, Dijkstra’s algorithm, Warshall algorithm.  
 
References: 

 
1. J. Clark and D. A. Holton: A First Look at Graph Theory, Allied Publishers Ltd., 1995. 
2. D. S. Malik, M. K. Sen and S. Ghosh: Introduction to Graph Theory, Cengage Learning 

Asia, 2014. 
3. Nar Sing Deo : Graph Theory, Prentice-Hall, 1974. 
4. J. A. Bondy and U.S.R. Murty: Graph Theory with Applications, Macmillan, 1976. 
5. Edgar G. Goodaire and Michael M. Parmenter, Discrete Mathematics with Graph Theory, 

2nd Edition, Pearson Education (Singapore) P. Ltd., Indian Reprint 2003..  
6. D.N.Ghosh, Discrete Mathematics, Academic Publishers 
7. D.K.Ghosh, Introduction to Graph Theory, New Central Book Agency(P) Ltd. 
 

 

Course Name: Object Oriented Programming in C++ 

Course Code: BSCHMTMSE402   

  

Course Type: SE Course Details: SEC-2  L-T-P: 4-0-0 

 

Credit: 4 

 

Full Marks: 50 

CA Marks ESE Marks 

Practical Theoretical Practical Theoretical 

…… 10 
       ....... 

40 

 
 

Course Learning Outcomes:  

(After the completion of course, the students will have ability to): 

 

• Understand the basic characteristics of object oriented programming languages, different 
components and structures in C++ programming language. 

• Understand and apply the programming concepts of C++ which is important for mathematical 

investigation and problem solving.  

• Use mathematical libraries for computational objectives.  

• Represent the outputs of programs visually in terms of well formatted text and plots. 

 

Unit 1: Programming paradigms, characteristics of object oriented programming languages, brief 

history of C++, structure of C++ program, differences between C and C++, basic C++ operators, 

Comments, working with variables, enumeration, arrays and pointer.  
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Unit 2: Objects, classes, constructor and destructors, friend function, inline function, encapsulation, 

data abstraction, inheritance, polymorphism, dynamic binding, operator overloading, method 

overloading, overloading arithmetic operator and comparison operators. 

  

Unit 3: Template class in C++, copy constructor, subscript and function call operator, concept of 

namespace and exception handling.  

 

References: 

1. A. R. Venugopal, Rajkumar, and T. Ravishanker, Mastering C++, TMH, 1997. 

2. S. B. Lippman and J. Lajoie, C++ Primer, 3rd Ed., Addison Wesley, 2000. 

3. Bruce Eckel, Thinking in C++, 2nd Ed., President, Mindview Inc., Prentice Hall, 2000. 

4. D. Parasons, Object Oriented Programming with C++, BPB Publication, 2008. 

5. Bjarne Stroustrup, The C++ Programming Language, 3rd Ed., Addison Welsley, 1997. 

6. E. Balaguruswami, Object Oriented Programming In C++, Tata McGrawHill, 2011. 
7. Herbert Scildt, C++, The Complete Reference, Tata McGrawHill, 2003. 
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SEMESTER V 

C O R E  C O U R S E - 1 1  

Course Name: Set Theory &Metric Spaces 

Course Code: BSCHMTMC501   

  

Course Type: C Course Details: CC-11  L-T-P: 5-1-0 

 

Credit: 6 

 

Full Marks: 50 

CA Marks ESE Marks 

Practical Theoretical Practical Theoretical 

…… 10 
       ....... 

40 

Course Learning Outcomes: This course will enable the students to:  

• Learn basic facts about the cardinality of a set. 

• Learn abstract formulation of the notion “distance” on an arbitrary set and 

learn how known concepts like continuity, convergence of sequences etc 

behave in such abstract setting. 

• Understand several standard concepts of metric spaces and their properties 

like openness, closeness, completeness, compactness, Bolzano-Weierstrass 

property, and connectedness. 

• Identify the continuity of a function defined on metric spaces and 

homeomorphisms.  

Unit-I: Theory of Sets  

Finite and infinite sets, Countable and uncountable sets, Cardinality of sets, Schröder-

Bernstein theorem, Cantor’s theorem, Order relation in cardinal numbers Arithmetic of 

cardinal numbers, Partially ordered set, Zorn’s lemma and Axiom of choice, Various set 

theoretic paradoxes.     

Unit-II: Concepts in Metric Spaces  

Definition and examples of metric spaces, Open ball/sphere and closed ball/sphere, 

Neighbourhoods, Hausdorff property, Interior points, Open sets, exterior and boundary 

points, Limit points and isolated points, Closed sets, metric topology, Interior and closure 

of a set, Boundary of a set, Bounded sets, Distance between two sets, Diameter of a set, 

Subspace of a metric space.  

Unit-III: Complete Metric Spaces and Continuous Functions  

Cauchy sequence and Convergent sequence, properties of a Cauchy sequence, 

Completeness of metric spaces, examples of some standard complete metric spaces 
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(ℝ𝑛, ℂ𝑛, 𝑙𝑝, 𝐶[𝑎, 𝑏]), Cantor’s intersection theorem, Dense sets and separable spaces, first 

countable and second countable metric spaces, relation between separable and second 

countable metric spaces, Nowhere dense sets and Baire’s category theorem, Continuous 

and uniformly continuous functions, sequential criteria and other characterizations of 

continuity, Homeomorphism, Banach Fixed point Theorem and its application to ordinary 

differential equations.  

Unit-IV: Compactness  

Compact spaces, Sequential compactness, Bolzano-Weierstrass property, compactness and 

finite intersection property, Heine-Borel theorem, Totally bounded sets, Equivalence of 

compactness and sequential compactness, Continuous functions on compact spaces.  

Unit-V: Connectedness  

Separated sets, Disconnected and connected sets, Components, Connected subsets of ℝ, 

Continuous functions on connected sets. 

References:  

1. P. R. Halmos (1974). Naive Set Theory. Springer.  

2. E. T. Copson (1988). Metric Spaces. Cambridge University Press. 

3. P. K. Jain & Khalil Ahmad (2019). Metric Spaces. Narosa.  

4. S. Kumaresan (2011). Topology of Metric Spaces (2nd edition). Narosa.  

5. M.N. Mukherjee (2014), Elements of metric spaces (4th edition), Academic publishers. 

6. Satish Shirali & Harikishan L. Vasudeva (2006). Metric Spaces. Springer-Verlag.  

7. Micheál O'Searcoid (2009). Metric Spaces. Springer-Verlag.  

8. G. F. Simmons (2004). Introduction to Topology and Modern Analysis. McGraw-Hill. 

9. Q.H. Ansari (2010).  Metric spaces. Narosa. 

 

C O R E  C O U R S E - 1 2  

Course Name: Advanced Algebra 

Course Code: BSCHMTMC502   

  

Course Type: C Course Details: CC-12  L-T-P: 5-1-0 

 

Credit: 6 

 

Full Marks: 50 

CA Marks ESE Marks 

Practical Theoretical Practical Theoretical 

…… 10 
       ....... 

40 

Course Learning Outcomes:  

(After the completion of course, the students will have ability to): 

• Understand the automorphism, inner automorphism and the fundamental concepts of Group 

Actions and their applications   
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• Understand the application of Sylow theorems to characterize certain Finite Groups. 

• Be acquainted with the basic concepts of Ring Theory such as the concepts of  ideals, quotient 

rings, Integral domains and Fields. 

• Know in detail about Polynomial Rings, Fundamental properties of Finite Field extensions and 

classification of Finite Fields.   

 

Unit -1: Automorphism, inner automorphism, Characteristic subgroups, Commutator subgroup and its 

properties. Group actions, orbits, stabilizers and kernels, Orbit-stabilizer Theorem, permutation 

representation associated with a given group action. Applications of group actions. Generalized 

Cayley’s theorem. Index theorem.  

 

Unit -2: Groups acting on themselves by conjugation, class equation and consequences, conjugacy in 

Sn, p-groups, Sylow’s theorems and consequences, Cauchy’s theorem, Finite Simple Groups, Simplicity 

of 𝐴𝑛 for  𝑛 ≥  5, non-simplicity tests. 

  

Unit -3: Definition, examples and elementary properties of rings, Commutative rings, Integral 

domain, Division rings and fields, Characteristic of a ring, Ring homomorphisms and  

isomorphisms, Ideals and quotient rings. Prime, principal and maximal ideals, Relation  between 

integral domain and field, Euclidean rings and their properties, Wilson and Fermat’s theorems. 

 

Unit -4: Polynomial rings over commutative ring and their basic properties, The division algorithm;  

Polynomial rings over rational field, Gauss lemma and Eisenstein’s criterion, Euclidean domain, 

principal ideal domain, and unique factorization domain. 

 

Unit -5: Extension of a field, Algebraic element of a field, Algebraic and transcendental numbers,  

Perfect field, Classification of finite fields. 

References:  

1. John B. Fraleigh, A First Course in Abstract Algebra, 7th Ed., Pearson, 2002. 

2. M. Artin, Abstract Algebra, 2nd Ed., Pearson, 2011. 

3. Joseph A. Gallian, Contemporary Abstract Algebra, 4th Ed., 1999. 

4. David S. Dummit and Richard M. Foote, Abstract Algebra, 3rd Ed., John Wiley and Sons 

(Asia) Pvt. Ltd., Singapore, 2004. 

5. J.R. Durbin, Modern Algebra, John Wiley & Sons, New York Inc., 2000. 

6. D. A. R. Wallace, Groups, Rings and Fields, Springer Verlag London Ltd., 1998 

7. D.S. Malik, John M. Mordeson and M.K. Sen, Fundamentals of Abstract Algebra, Tata 

McGrawHill,1997. 

8. I.N. Herstein, Topics in Algebra, Wiley Eastern Limited, India, 1975.  

9. P.B.Bhattacharya, S.K.Jain & S.R. Nagpaul, Basic Abstract Algebra, 2nd Ed., Cambridge University 

Press, 2003 
10. Serge Lang, Algebra, 3rd Ed, Springer-Verlag, 2002 

D E S C I P L I N E  S P E C I F I C  E L E C T I V E  ( D S E - 1  & D S E - 2 )  

(Choose any Two from the following) 

 

Course Name: Tensors & Differential Geometry 

Course Code: BSCHMTMDSE501   
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Course Type: DSE Course Details: DSE-1 /DSE-2 L-T-P: 5-1-0 

 

Credit: 6 

 

Full Marks: 50 

CA Marks ESE Marks 

Practical Theoretical Practical Theoretical 

…… 10 
       ....... 

40 

 
Course Learning Outcomes:  

(After the completion of course, the students will have ability to): 
• Explain the basic concepts of tensors. 

• Understand role of tensors in differential geometry. 

• Learn various properties of curves including Frenet-Serret formulae and their applications. 

• Know the Interpretation of the curvature tensor, Geodesic curvature, Gauss and Weingarten 

formulae. 

• Understand the role of Gauss’s Theorema Egregium and its consequences. 

• Apply problem-solving with differential geometry to diverse situations in physics, 

engineering and in other mathematical contexts. 

 

Unit -1: Tensor: Contravariant and Covariant vectors, Different transformation laws, Tensor 
product of two vector spaces, Properties of tensors, Symmetric and Skew symmetric Tensors, 
Contraction of Tensors, Quotient law, Inner product of vectors  
 
Unit -2: Metric tensor, Associated Covariant and Contravariant vectors, Christoffel Symbols 
and their laws of transformation, Riemannian space, Covariant Differentiation of Covariant and 
Contravariant vectors and of Tensors, Curvature Tensors, Ricci Tensor, Einstein space.  
 
 
Unit -3: Theory of Space Curves: Space curves, Planer curves, Arc length, Curvature, torsion 
and Serret-Frenet formula. Fundamental existence and uniqueness Theorem for curves, Non-
unit Speed curves, Osculating circles, Osculating circles and spheres, Existence of space 
curves. Evolutes and involutes of curves. 
 
 
Unit -4: Theory of Surfaces: Parametric curves on surfaces, Direction coefficients, First and 
second Fundamental forms, Principal, Gaussian and Mean curvatures, Gauss and Weingarten 
Formulae, The Fundamental Theorem of Surfaces, Surfaces of constant Gauss Curvature, 
Gauss-Bonnet theorem, Lines of curvature, Euler’s theorem. Rodrigue’s formula, Conjugate 
and Asymptotic lines. 
 
Unit -5: Developables: Developable associated with space curves and curves on surfaces, 
Minimal surfaces. Geodesics: Canonical geodesic equations, Nature of geodesics on a surface 
of revolution. Clairaut’s theorem, Normal property of geodesics, Torsion of a geodesic, 
Geodesic curvature. Parallel vector field along a curve and Parallelism, Exponential map, 
Gauss Lemma, Geodesic Co-ordinates. 
 
 
References: 
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1. T.J. Willmore, An Introduction to Differential Geometry, Dover Publications, 2012. 
2. B. O'Neill, Elementary Differential Geometry, 2nd Ed., Academic Press, 2006. 
3. C.E. Weatherburn, Differential Geometry of Three Dimensions, Cambridge University 

Press 2003. 
4. D.J. Struik, Lectures on Classical Differential Geometry, Dover Publications, 1988. 
5. S. Lang, Fundamentals of Differential Geometry, Springer, 1999. 
6. B. Spain, Tensor Calculus: A Concise Course, Dover Publications, 2003 
7. P. K. Nayak, Textbook of Tensor Calculus and Differential Geometry, PHI Learning Private 

Limited, 2012. 
8. Christian Bär, Elementary Differential Geometry, Cambridge University Press, 2010 
9. R. S. Mishra, A Course in Tensors with Applications to Riemannian Geometry, Pothishala 

Pvt Ltd., 1965 

Course Name: Integral Transforms and Fourier Analysis  

Course Code: BSCHMTMDSE502   

  

Course Type: DSE Course Details: DSE-1 / DSE-2 L-T-P: 5-1-0 

 

Credit: 6 

 

Full Marks: 50 

CA Marks ESE Marks 

Practical Theoretical Practical Theoretical 

…… 10 
       ....... 

40 

 
 

Course Learning Outcomes:  
(After the completion of course, the students will have ability to): 

• Learn Fourier series, Bessel’s inequality, term by term differentiation and integration 

of Fourier series. 

• Know about Fourier Transform and its relation with Fourier Series, Laplace 

Transform and its relation with Fourier Transform and the sufficient conditions for 

their existence. 

• Familiarise with the properties of Fourier and Laplace Transforms.  

• Learn to apply Fourier and Laplace Transforms to well-known functions.  

• Learn to find inverse Laplace Transform and inverse Fourier Transform. 

• To be able to solve real world initial value, boundary value and initial-boundary 

problems using Integral Transforms or Fourier Series.   

 

UNIT-1: Fourier Series 

Periodic functions. Definition of Fourier Series.  Dirichlet’s conditions of convergence and 

statement for sufficient condition for a trigonometric series to be a Fourier series.  Derivation 

of Fourier Coefficients. Examples of Fourier expansions and summation results for series.  

Gibbs phenomenon. Use of odd & even functions in evaluating Fourier coefficients– Half range 

sine & cosine series, Differentiation and integration of Fourier series. Statements of absolute 
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and uniform convergence of Fourier series, Riemann- Lebesgue lemma, Bessel's inequality and 

Parseval's identity. The complex form of Fourier series. 

 

Unit-2: Fourier Transforms  

Fourier Transforms as a limit of Fourier Series. Fourier Integral Theorem (statement only). 

Determination of Fourier Transform Pairs from Fourier Integral. Definition and properties of 

Fourier Transforms: Linearity, Change of Scale Property, Shifting Property, Modulation 

theorem. Fourier Transforms of Derivatives, Fourier Transforms of some useful functions. 

Fourier sine and cosine transforms.  

Inverse Fourier Transform and examples. Statements of Convolution Theorem, Plancherel's 

identity, Reimann-Lebesgue Lemma and examples. 

 

Unit-3: Laplace Transforms 

Definition of Laplace Transform. Derivation of Laplace Transform from Fourier Integral and 

its relation with Fourier Transform. Laplace Transform of some elementary functions. 

Suffcient conditions for the existence of Laplace Transform (statement only) with counter 

examples. Properties of Laplace transforms: Linearity, First Shifting Property, Change of Scale 

Property, Laplace transforms of periodic functions, Second Shifting Property, Laplace 

transforms of derivatives and integrals. Laplace transform of Dirac’s delta function, Statements 

of Initial and final value theorems.  

Inverse Laplace Transform: Definition and examples. Lerch’s theorem (statement only). 

Statement and applications of Convolution theorem and Heaviside expansion theorem.  

 

Unit 4: Applications of Integral Transforms and Fourier Analysis 

Application of Fourier series in the solution of heat equation, wave equation and Laplace 

equation. Application of Integral Transforms in the solution of initial value and boundary value 

problems in ODEs. Solution of heat equation and wave equation using Integral Transforms. 

 

References:  
1. I. N. Sneddon (1969) Fourier Series. Dover.  

2. L. C. Andrews and B. K. Shivamoggi (1999). Integral Transforms for Engineers (Vol. 66). SPIE Press. 

3. A. Pinkus and S. Zafrany (1997). Fourier Series and Integral Transforms. Cambridge University 

Press. 

4. L. Debnath and D. Bhatta (2016). Integral Transforms and their Applications. Chapman and 
Hall/CRC. 

5. Erwin Kreyszig (2011). Advanced Engineering Mathematics (10th edition). Wiley. 
6. A. K. Vasishtha and R. K. Gupta (2016): Integral Transforms. Krishna  

7. Murray R. Spiegel (1974). Fourier Analysis with Applications to Boundary Value Problems. 
Schaum's Outline Series. 

 

 

Course Name: Linear Programming and Game Theory 

Course Code: BSCHMTMDSE503   
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Course Type: DSE Course Details: DSE-1 / DSE-2 L-T-P: 5-1-0 

 

Credit: 6 

 

Full Marks: 50 

CA Marks ESE Marks 

Practical Theoretical Practical Theoretical 

…… 10 
       ....... 

40 

 
 

Course Learning Outcomes:  
(After the completion of course, the students will have ability to): 

• Analyze and solve linear programming models of real life situations. 

• Provide graphical solution of linear programming problems with two variables, and illustrate 

the concept of convex set and extreme points. 

• Solve linear programming problems using simplex method. 

• Learn techniques to solve transportation and assignment problems. 

• Solve two-person zero sum game problems. 

 

Unit -1: Introduction to linear programming problem. Theory of simplex method, graphical 
solution, convex sets, theorems on convex sets, optimality and unboundedness, Unique and 
alternative solutions, the simplex algorithm, simplex method in tableau format, Artificial 
variables, two-phase method. Big-M method and their comparison.  
 
Unit -2: Duality, formulation of the dual problem, primal-dual relationships, economic 
interpretation of the dual, Dual Simplex method.  
 
Unit -3: Transportation problem and its mathematical formulation, northwest corner method, 
least cost method and Vogel approximation method for determination of starting basic solution, 
algorithm for solving transportation problem, Optimal solution, assignment problem and its 
mathematical formulation, Hungarian method for solving assignment problem, Travelling 
salesman problem.  
 
Unit -4: Game theory: Formulation of two person zero sum games, solving two person zero 
sum games, games with mixed strategies, Rectangular and Square games, Concept of 
Dominance, graphical solution procedure, Algebraic method of solution, linear programming 
solution of games.  
 
References:  

1. Mokhtar S. Bazaraa, John J. Jarvis and Hanif D. Sherali, Linear Programming and 
Network Flows, 2nd Ed., John Wiley and Sons, India, 2004. 

2. F.S. Hillier and G.J. Lieberman, Introduction to Operations Research, 9th Ed., Tata 
McGraw Hill, Singapore, 2009. 

3. Hamdy A. Taha, Operations Research, An Introduction, 8th Ed., Prentice‐Hall India, 
2006. 

4. G. Hadley, Linear Programming, Narosa Publishing House, New Delhi, 2002. 
5. J.G.Chakravorty and P.R.Ghosh, Linear Programming and Game Theory, Moulik 

Library. 
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6. A.Mukherjee and N.K.Bej, Advance Linear Programming and Game Theory, Books 
and Allied(P) Ltd. 

7. J.K.Sharma, Operations Research, TRINITY. 

 
 

 

Course Name: Special Theory and Relativity 

Course Code: BSCHMTMDSE504   

  

Course Type: DSE Course Details:DSE-1 / DSE-2 L-T-P: 5-1-0 

 

Credit: 6 

 

Full Marks: 50 

CA Marks ESE Marks 

Practical Theoretical Practical Theoretical 

…… 10 
       ....... 

40 

 
 

Course Learning Outcomes: This course will enable the students to 

• Understand the basic concepts of Special Relativity including Michelson-Morley experiment 

and geometrical interpretations of Lorentz transformation equations. 

• Learn about length contraction, time dilation and relativity of simultaneity. 

• Study 4-dimensional Minkowskian space-time and its properties. 

• Understand the concepts of 4-vectors, mass-energy equivalence and equations of motion as a 

part of relativistic mechanics. 

• Imbibe connections between relativistic mechanics and electromagnetism. 

 

Unit-I: Review of Newtonian Mechanics and Introduction to Special Relativity 

Inertial frames, Speed of light and Galilean relativity, Michelson-Morley experiment, Lorentz-

Fitzgerald contraction hypothesis, Relative character of space and time, Concepts of Simultaneity, 

Postulates of special theory of relativity, Lorentz transformation equations and its geometrical 

interpretation, Group properties of Lorentz transformations. 

 

Unit-II: Relativistic Kinematics 

Consequences of Lorentz transformation - Composition of parallel velocities, Length contraction, Time 

dilation, Transformation equations for components of velocity and acceleration of a particle and Lorentz 
contraction factor, Relativistic Doppler effect. 

 

Unit-III: Geometrical Representation of Space-time 

Four dimensional Minkowskian space-time of special relativity, Time-like, light-like and space-like 

intervals, Null cone, Proper time, World line of a particle, Four vectors and tensors in Minkowskian 

space-time. 

 

Unit-IV: Relativistic Mechanics 

Variation of mass with velocity, Equivalence of mass and energy, Energy-momentum four vector, 

Transformation equations for momentum and energy, Relativistic mass-energy relation, Relativistic 

force and Transformation equations for its components, Relativistic equations of motion of a particle in 

covariant form, Longitudinal and transverse mass, Relativistic Lagrangian and Hamiltonian for a 

particle. 
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Unit-V: Electromagnetism 

Energy-momentum tensor of a continuous material distribution, Transformation equations for the 

densities of electric charge and current, electric and magnetic field strengths under Lorentz 

transformation, The Field of a uniformly moving point charge, Forces and fields near a current carrying 

wire, Forces between moving charges, The invariance of Maxwell`s equations, Maxwell’s equations in 

tensor form. 

 

References: 

1.  James L. Anderson (1973), Principles of Relativity Physics, Academic Press. 

2. Peter Gabriel Bergmann (1976), Introduction to the Theory of Relativity, Dover Publications. 

3.  C. Moller (1972), The Theory of Relativity (2nd edition), Oxford University Press. 

4.  Robert Resnick (2007), Introduction to Special Relativity, Wiley. 

5.  Wolfgang Rindler (1977), Essential Relativity: Special, General, and Cosmological, Springer-

Verlag. 

6.  V. A. Ugarov (1979), Special Theory of Relativity, Mir Publishers, Moscow. 

7.  S. Banerji & A. Banerjee (2012), The Special Theory of Relativity, Prentice Hall India Learning 
Private Limited. 

 

 

 

 

 

 

 

SEMESTER VI 

C O R E  C O U R S E - 1 3  

Course Name: Complex Analysis 

Course Code: BSCHMTMC601   

  

Course Type: C Course Details: CC-13 L-T-P: 5-1-0 

 

Credit: 6 

 

Full Marks: 50 

CA Marks ESE Marks 

Practical Theoretical Practical Theoretical 

…… 10 
       ....... 

40 

 
Course Learning Outcomes: This course will enable the students to: 

• Visualize complex numbers as points of ℝ2 and stereographic projection of complex 

                 plane on the Riemann sphere. 

• Understand the significance of differentiability and analyticity of complex functions 

             leading to the Cauchy-Riemann equations. 

• Learn the role of Cauchy-Goursat theorem and Cauchy integral formula in evaluation 

             of contour integrals. 

• Apply Liouville’s theorem in fundamental theorem of algebra. 

• Understand the convergence, term by term integration and differentiation of a power 
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             series. 

• Learn Taylor and Laurent series expansions of analytic functions, classify the nature 

             of singularity, poles and residues and application of Cauchy Residue theorem. 

 

Unit-1: Complex Plane and functions: Complex numbers and their representations, algebra of 

complex numbers; Complex plane, Open set, Domain and region in complex plane; Stereographic 

projection; functions, limits & continuity. 

 

Unit-2: Analytic functions and Cauchy-Riemann equations: 

Differentiability of a complex valued function, Cauchy-Riemann equations, Harmonic functions, 

Analytic functions, necessary and sufficient conditions for analyticity. 

 

Unit-3: Power Series: Power series, radius of convergence, Cauchy-Hadamard theorem, analyticity of 

the sum function of a power series . 

 

Unit-4: Conformal and Bilinear Transformations: Transformations, Examples of isogonal and 

conformal transformations, Some general transformations: translation, rotation, magnification, 

inversion  ; Bilinear transformation , fixed points of a bilinear transformation , cross ratio . 

 

Unit-5: Cauchy’s theorem: Complex line integrals, Cauchy’s theorem on line integral , evaluations of 

line integrals using  Cauchy’s integral formula, Morera’s theorem, Cauchy’s inequality, Lioville’s 

theorem, Taylor’s theorem and Laurent’s theorem on analytic functions. 

 

Unit-5: Singularities and Contour integration: Zeros of an analytic function, singularities and their 

natures, residues at pole, residues at infinity , Cauchy’s residue theorem  , Jordan’s lemma, evaluation 

of proper and improper integrals. 

 

References: 

1. Lars V. Ahlfors (2017). Complex Analysis (3rd edition). McGraw-Hill Education. 

2. Joseph Bak & Donald J. Newman (2010). Complex Analysis (3rd edition). Springer. 

3. James Ward Brown & Ruel V. Churchill (2009). Complex Variables and Applications 

(9th edition). McGraw-Hill Education. 

4. John B. Conway (1973). Functions of One Complex Variable. Springer-Verlag. 

5. E.T. Copson (1970). Introduction to Theory of Functions of Complex Variable. Oxford 

University Press. 

6. Theodore W. Gamelin (2001). Complex Analysis. Springer-Verlag. 

7. George Polya & Gordon Latta (1974). Complex Variables. Wiley. 

8. H. A. Priestley (2003). Introduction to Complex Analysis. Oxford University Press. 

9. E. C. Titchmarsh (1976). Theory of Functions (2nd edition). Oxford University Press.  

C O R E  C O U R S E - 1 4  

Course Name: Numerical Methods & Numerical Lab 

 Course Code: BSCHMTMC602   
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Course Type: C 

(Theoretical+Practical) 

Course Details: CC-14 L-T-P: 4-0-4 

 

Credit: 6 

 

Full Marks: 100 

CA Marks ESE Marks 

Practical Theoretical Practical Theoretical 

30 10 20 40 

 
Course Learning Outcomes:  

(After the completion of course, the students will have ability to): 

• Understand the problem solving skills using numerical methods, 

• Handle large system of equations, non-linearity and and that are often impossible to 

solve analytically, 

• Solve differential equations by numerical methods, 

• Develop problem solving skills using computer programming, 

• Acquire knowledge of C programming language, 

• Solve different numerical problems using algorithm, flowchart,  C language programming. 

 

 

Numerical Methods(50 marks) 

 

Unit-1: Algorithms, Convergence, Errors: Relative, Absolute. Round off, Truncation.  

 

Unit-2: Transcendental and Polynomial equations: Bisection method, Newton’s method, Secant 

method, Regula-falsi method, fixed point iteration, Newton-Raphson method. Error and Rate of 

convergence of these methods.  

 

Unit -3: System of linear algebraic equations: Gaussian Elimination and Gauss Jordan methods. Gauss 

Jacobi method, Gauss Seidel method and their convergence analysis, LU Decomposition.  

 

Unit-4: Interpolation: Lagrange and Newton’s methods, Error bounds, Finite difference operators. 

Gregory forward and backward difference interpolations. 

Numerical differentiation: Methods based on interpolations, methods based on finite differences.  

 

Unit–5: Numerical Integration: Newton Cotes formula, Trapezoidal rule, Simpson’s 1/3rd  rule, 

Simpsons 3/8th rule, Weddle’s rule, Boole’s rule. Midpoint rule, Composite Trapezoidal rule, 

Composite Simpson’s 1/3rd  rule, Gauss quadrature formula. 

The algebraic eigen value problem: Power method.  

 

Unit -6: Numerical solution of Ordinary Differential Equations: The method of successive 

approximations, Euler’s method, the modified Euler method, Runge-Kutta methods of orders two and 

four.  

 

Numerical Methods Lab  (using C programming)  (Total Marks: 50 )  

• Continuous assessment (internal): Total 30 marks. 

Students have to prepare a practical note book containing working formula, algorithm, flowchart and 

program with input and output of all practical problem listed below. 

• End Semester Examination (External): Total 20 marks. 

Lab notebook & Viva Voce: 5 marks 

One practical problem: 15 marks (Working formula: 2, Algorithm: 3, Program: 8, Result: 2) 
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List of practical problems (using C programming) 

1. Solution of transcendental and algebraic equations by 

(a) Newton Raphson method. 

(b) Regula Falsi method. 

 

2. Solution of system of linear equations 

(a) Gaussian elimination method 

(b) Gauss-Seidel method 

 

3. Interpolation: Lagrange Interpolation 

 

4. Numerical Integration 

(a) Trapezoidal Rule 

(b) Simpson’s one third rule 

 
5. Solution of 1st order ordinary differential equations: Fourth order Runge Kutta method 

 

Reference: 

1. Brian Bradie, A Friendly Introduction to Numerical Analysis, Pearson Education, India, 2007. 

2. M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering, 

2012. 

3. Nayak, P.K., Numerical Analysis: Theory & Applications, Asian Books Pvt. Ltd. 

4. C.F. Gerald and P.O. Wheatley, Applied Numerical Analysis, Pearson Education, India, 2008. 

5. Uri M. Ascher and Chen Greif, A First Course in Numerical Methods, 7th Ed., PHI Learning 

Private 

6. John H. Mathews and Kurtis D. Fink, Numerical Methods using Matlab, 4th Ed., PHI 

Learning Private Limited, 2012. 

7. Scarborough, James B., Numerical Mathematical Analysis, Oxford and IBH publishing co, 

1966. 

8. Atkinson, K. E., An Introduction to Numerical Analysis, John Wiley and Sons, 1978. 

Yashavant Kanetkar, Let Us C, BPB Publications, 2016. 

9. S.A. Molla, Numerical Analysis and computational Procedures, Books and Allied (P) Ltd., 

2005. 

D E S C I P L I N E  S P E C I F I C  E L E C T I V E  ( D S E )  

(Choose any two from the following) 

 

Course Name: Discrete Mathematics 

Course Code: BSCHMTMDSE601   

  

Course Type: DSE Course Details: DSE-3/DSE-4 L-T-P: 5-1-0 

 

Credit: 6 

 

Full Marks: 50 

CA Marks ESE Marks 

Practical Theoretical Practical Theoretical 

…… 10 
       ....... 

40 

Course Learning Outcomes: This course will enable the students to: 

• Learn about partially ordered sets, lattices and their types. 
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• Understand Boolean algebra and Boolean functions, logic gates, switching circuits and their 

applications. 

• Solve real-life problems using finite-state and Turing machines. 

• Assimilate various graph theoretic concepts and familiarize with their applications. 

Unit-I: Partially Ordered Sets 

Definitions, examples and basic properties of partially ordered sets (poset), Order isomorphism, Hasse 

diagrams, Dual of a poset, Duality principle, Maximal and minimal elements, Least upper bound and 

greatest upper bound, Building new poset, Maps between posets. 

 

Unit-II: Lattices 

Lattices as posets, Lattices as algebraic structures, Sublattices, Products and homomorphisms; 

Definitions, examples and properties of modular and distributive lattices; Complemented, relatively 

complemented and sectionally complemented lattices. 

 

Unit-III:Boolean Algebras and Switching Circuits 

Boolean algebras, De Morgan’s laws, Boolean homomorphism, Representation theorem; Boolean 

polynomials, Boolean polynomial functions, Disjunctive and conjunctive normal forms, Minimal forms 

of Boolean polynomials, Quine-McCluskey method, Karnaugh diagrams, Switching circuits and 

applications. 

 

Unit-IV: Finite-State and Turing Machines 

Finite-state machines with outputs, and with no output; Deterministic and nondeterministic finite-state 

automaton; Turing machines: Definition, examples, and computations. 

 

Unit-V: Graphs 

Definition, examples and basic properties of graphs, Königsberg bridge problem; Subgraphs, 

Pseudographs, Complete graphs, Bipartite graphs, Isomorphism of graphs, Paths and circuits, Eulerian 

circuits, Hamiltonian cycles, Adjacency matrix, Weighted graph, Travelling salesman problem, 

Shortest path and Dijkstra’s algorithm. 

 

References :  

1. B. A. Davey & H. A. Priestley (2002). Introduction to Lattices and Order (2nd 

edition). Cambridge University Press. 

2. Edgar G. Goodaire & Michael M. Parmenter (2018). Discrete Mathematics with 

Graph Theory (3rd edition). Pearson Education. 

3. Rudolf Lidl & Günter Pilz (1998). Applied Abstract Algebra (2nd edition). Springer. 

4. Kenneth H. Rosen (2012). Discrete Mathematics and its Applications: With 

Combinatorics and Graph Theory (7th edition). McGraw-Hill. 

5. D. S. Malik and M. K. Sen (2004), Discrete Mathematical Structures: Theory and Applications. 

THOMSON (COURSE TECHNOLOGY). 

6. C. L. Liu (1985). Elements of Discrete Mathematics (2nd edition). McGraw-Hill. 

 
 

Course Name: Number Theory 

Course Code: BSCHMTMDSE602   
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Course Type: DSE Course Details: DSE-3/DSE-4 L-T-P: 5-1-0 

 

Credit: 6 

 

Full Marks: 50 

CA Marks ESE Marks 

Practical Theoretical Practical Theoretical 

…… 10 
       ....... 

40 

 
Course Learning Outcomes: This course will enable the students to: 

• Learn about some important results in the theory of numbers including the prime number 

theorem, Chinese remainder theorem, Euler’s theorem, Wilson's theorem and their 

consequences. 

• Learn about number theoretic functions, modular arithmetic and their applications. 

• Familiarise with modular arithmetic and find primitive roots of prime and composite numbers. 

• Know about open problems in number theory, namely, the Goldbach conjecture and 

             Twin-prime conjecture. 

• Apply public crypto systems, in particular, RSA. 

Unit-I: Distribution of Primes and Theory of Congruencies 

Linear Diophantine equation, Prime counting function, Prime number theorem, Goldbach 

conjecture, Twin-prime conjecture, Odd perfect numbers conjecture, Fermat and Mersenne 

primes, Congruence relation and its properties, Linear congruence and Chinese remainder 

theorem, Fermat's little theorem, Wilson's theorem. 

 

Unit-II: Number Theoretic Functions 

Number theoretic functions for sum and number of divisors, Multiplicative function, The 

Möbius inversion formula, Greatest integer function, Euler’s phi-function and properties, 

Euler’s theorem. 

 

Unit-III: Primitive Roots 

Order of an integer modulo n, Primitive roots for primes, Composite numbers having 

primitive roots; Definition of quadratic residue of an odd prime, Euler’s criterion. 

 

Unit-IV: Quadratic Reciprocity Law 

The Legendre symbol and its properties, Quadratic reciprocity, Quadratic congruencies with 

composite moduli. 

 

Unit-V: Applications 

Public key encryption, RSA encryption and decryption with applications in security systems. 

References :  

1. David M. Burton (2007). Elementary Number Theory (7th edition). McGraw-Hill. 

2. I. Niven (2012). An Introduction to the Theory of Numbers (5th edition). John Wiley & Sons. 

3. Neville Robbins (2007). Beginning Number Theory (2nd edition). Narosa. 

4. Gareth A. Jones & J. Mary Jones (2005). Elementary Number Theory. Springer. 

5. Neal Koblitz (1994). A Course in Number Theory and Cryptography (2nd edition). Springer-

Verlag. 

 

 

Course Name: Advanced Mechanics 

Course Code: BSCHMTMDSE603   
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Course Type: DSE Course Details: DSE-3 / DSE-4 L-T-P: 5-1-0 

 

Credit: 6 

 

Full Marks: 50 

CA Marks ESE Marks 

Practical Theoretical Practical Theoretical 

…… 10 
       ....... 

40 

 
Course Learning Outcomes: This course will enable the students to:  

• Understand the reduction of force system in three dimensions to a resultant force acting at a base 

point and a resultant couple.  

• Learn about a nul point, a nul line, and a nul plane with respect to a system of forces acting on a 

rigid body together with the idea of central axis. 

• Know the inertia constants for a rigid body and the equation of momental ellipsoid together with 

the idea of principal axes and principal moments of inertia to derive Euler’s dynamical equations.  

• Study the kinematics and kinetics of fluid motions to understand the equation of continuity in 

Cartesian, cylindrical polar and spherical polar coordinates which are used to derive Euler’s 

equations and Bernoulli’s equation.  

•  Deal with two-dimensional fluid motion using the complex potential and also to understand the 

concepts of sources, sinks, doublets and the image systems of these with regard to a line and a 

circle.  

 

Unit-I: Statics in Space: Forces in three dimensions, Reduction to a force and a couple, 

Equilibrium of a system of particles, Central axis and Wrench, Equation of the central axis. 

 

Unit-II: Motion of a Rigid Body : Definition of rigid body as a system of particles and condition 

of rigidity, Moments and products of inertia of standard bodies, Momental ellipsoid, Principal axes 

and principal moments of inertia; The momentum of a rigid body in terms of linear momentum and 

angular momentum about any point, Equations of motion in terms of linear and angular momenta, 

Motion of a rigid body with a fixed point, Existence of an angular velocity, Kinetic energy and 

angular momentum of a rigid body in terms of inertia constants, Euler’s dynamical equations and 

the motion under no forces.  

 

Unit-III: Kinematics of Fluid Motion : Lagrangian and Eulerian approaches, Acceleration of fluid 

at a point, Equation of continuity in Cartesian, cylindrical polar and spherical polar coordinates, 

Boundary surface, Streamlines and path lines, Velocity potential, Rotational and irrotational 

motion, Vorticity vector and vortex lines. 

  

Unit-IV: Kinetics of Fluid Motion: Euler’s equations of motion in Cartesian, cylindrical polar and 

spherical polar coordinates, Bernoulli’s equation, Impulsive motion.  

 

Unit-V: Motion in Two-Dimensions: Stream function, Complex potential, Basic singularities: 

Sources, sinks, doublets and complex potentials due to these basic singularities; Image system of a 

simple source and a simple doublet with regard to a line and a circle.  

 

References:  

1. A. S. Ramsay (1960). A Treatise on Hydromechanics, Part-II Hydrodynamics G. Bell & Sons.  

2. F. Chorlton (1967). A Textbook of Fluid Dynamics. CBS Publishers.  
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3. Michel Rieutord (2015). Fluid Dynamics An Introduction. Springer.  

4. E. A. Milne (1965). Vectorial Mechanics,Methuen & Co.Limited.London. 

5. F. Chorlton (1969). A Text Book of Dynamics, D Van Nosterand Co. Ltd.London. 

6. Shanti Swarup, Fluid dynamics, Krishna Prakashan, Meerut. 

7. M.D.Raisinghania, Fluid Dynamics, S.Chand 

               8. Ghosh, M. C, Analytical Statics. 

               9. Matiur Rahman, Md., Statics, New Central Book Agancy (P) Ltd, 2004.  

               10. S.A. Mollah, Analytical Statics, Books and Allied (P)Ltd 

               11. S.A. Mollah, Dynamics of Rigid Bodies, Books and Allied (P)Ltd 

               12.  A. Mukherjee and N.K.Bej, Advanced Mechanics,Shreedhar Prakashani. 

 

 

Course Name: Bio Mathematics 

Course Code: BSCHMTMDSE604   

  

Course Type: DSE Course Details:DSE-3/ DSE-4 L-T-P: 5-1-0 

 

Credit: 6 

 

Full Marks: 50 

CA Marks ESE Marks 

Practical Theoretical Practical Theoretical 

…… 10 
       ....... 

40 

Course Learning Outcomes:  

(After the completion of course, the students will have ability to): 

• Grasp the idea of various bio-mathematical models and techniques which will help them to tackle 

physical world problems. 
 

Unit -1: Mathematical Biology and the modeling process: an overview. Continuous models: Malthus 

model, logistic growth, Allee effect, Gompertz growth, Michaelis-Menten Kinetics, Holling type 

growth, Bacterial growth in a Chemostat, Harvesting a single natural population, Prey predator systems 

and Lotka Volterra equations, Populations in competitions, Epidemic Models (SI, SIR, SIRS, SIC)  

 

Unit -2: Activator-Inhibitor system, Insect Outbreak Model: Spruce Budworm, Numerical solution of 

the models and its graphical representation. Qualitative analysis of continuous models: Steady state 

solutions, stability and linearization, multiple species communities and Routh-Hurwitz Criteria, Phase 

plane methods and qualitative solutions, bifurcations and limit cycles with examples in the context of 

biological scenario Spatial Models: One species model with diffusion, Two species model with 

diffusion. Conditions for diffusive instability, Spreading colonies of microorganisms, Blood flow in 
circulatory system, Travelling wave solutions, Spread of genes in a population.  

 

Unit -3: Discrete Models: Overview of difference equations, steady state solution and linear stability 

analysis. Introduction to Discrete Models, Linear Models, Growth models, Decay models, Drug 

Delivery Problem, Discrete Prey-Predator models, Density dependent growth models with harvesting, 

Host-Parasitoid systems (Nicholson- Bailey model), Numerical solution of the models and its graphical 

representation. Case Studies: Optimal Exploitation models, Models in Genetics, Stage Structure 

Models, Age Structure Models.  

 

Graphical Demonstration (Teaching Aid)  
1. Growth model (exponential case only). 
2. Decay model (exponential case only). 
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3. Lake pollution model (with constant/seasonal flow and pollution concentration). 
4. Case of single cold pill and a course of cold pills. 
5. Limited growth of population (with and without harvesting). 
6. Predatory-prey model (basic volterra model, with density dependence, effect of DDT, 
two  
    prey one predator). 
7. Epidemic model of infuenza (basic epidemic model, contagious for life, disease with  
    carriers). 
8. Battle model (basic battle model, jungle warfare, long range weapons). 
 

 
References: 

1. L.E. Keshet, Mathematical Models in Biology, SIAM, 1988. 
2. J. D. Murray, Mathematical Biology, Springer, 1993. 
3. Y.C. Fung, Biomechanics, Springer-Verlag, 1990. 
4. F. Brauer, P.V.D. Driessche and J. Wu, Mathematical Epidemiology, Springer, 2008 
5. M. Kot, Elements of Mathematical Ecology, Cambridge University Press, 2001. 

 

 

 

 

 

 

 

P o o l  o f  G e n e r i c  e l e c t i v e  C a l c u l u s   
 

[ S t u d e n t s  o f  a  P a r t i c u l a r  H o n o u r s  d e p a r t m e n t  w i l l  c h o o s e  o n e  

G e n e r i c  E l e c t i v e  P a p e r  o f  a n y  o t h e r  e x i s t i n g  H o n o u r s  

D e p a r t m e n t  e x c e p t  h i s / h e r  D e p a r t m e n t  f r o m  t h e  p o o l  p r o v i d e d  

b e l o w ]  

 

Semester I 

 
G E N E R I C  E L E C T I V E S  [ G E - 1 ( 1 ) ]  

 

Course Name: Differential Calculus 

Course Code: BSCHMTMGE101   

  

Course Type: GE Course Details: GE-1 L-T-P: 5-1-0 

 

Credit: 6 

 

Full Marks: 50 

CA Marks ESE Marks 

Practical Theoretical Practical Theoretical 

…… 10 
       ....... 

40 
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Course Learning Outcomes:  
(After the completion of course, the students will have ability to): 

• Assimilate the notions of limit of a sequence and convergence of a series of real numbers. 

• Calculate the limit and examine the continuity of a function at a point. 

• Understand the consequences of various mean value theorems for differentiable functions. 

• Sketch curves in Cartesian and polar coordinate systems. 

 

Limit of functions, Algebra of limits, Continuous functions, Properties of continuous functions, 

Monotone functions, Inverse function.  Differentiability of functions, Successive differentiation, 

Leibnitz’s theorem,  Rolle’s theorem, Mean value theorem of Lagrange and of Cauchy with geometrical 

interpretations. Taylor’s theorem and Maclaurin’s theorem with remainder in Lagrange’s and Cauchy’s 

form and application of mean value theorem,  Darboux’s theorem.  Series expansion of  

sin 𝑥 , cos 𝑥, log(1 + 𝑥) , (1 + 𝑥)𝑛, 𝑎𝑥 with domain of convergence.   

 

Partial differentiation, Euler’s theorem on homogeneous functions. 

 

Determination of maxima and  minima, Indeterminate forms.  

 

Tangents and normals, Curvature, Asymptotes, Singular points, Tracing of curves. Parametric 

representation of curves and tracing of parametric curves, Polar coordinates and tracing of curves in 

polar coordinates. 

 

References:  

1. H. Anton, I. Birens and S. Davis, Calculus, John Wiley and Sons, Inc., 2002. 

2. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2007. 
3. Richard R.Goldberg, Methods of Real Analysis, Oxford and IBH, 2012.  

4. Shanti Naryayn and P. K. Mittal, Differential Calculus, S Chand. 

5. K.C.Maity and R.K.Ghosh, Differential Calculus, Books and Allied (P) Ltd. 

 

 

 

Semester II 

 

G E N E R I C  E L E C T I V E S  [ G E - 1 ( 2 ) ]  

 

Course Name: Differential Equations and Vector Calculus 

Course Code: BSCHMTMGE201   

  

Course Type: GE Course Details: GE-2 L-T-P: 5-1-0 

  CA Marks ESE Marks 

Practical Theoretical Practical Theoretical 
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       ....... 
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Course Learning Outcomes:  

(After the completion of course, the students will have ability to): 

• Learn various methods to find the solutions of ordinary differential equations. 

• Understand the central concepts in multivariable analysis, including space curves;  

directional derivative; gradient; multiple integrals; line and surface integrals;  

vector fields; divergence, curl and flux;  

 

First order exact differential equations. Integrating factors, rules to find an integrating factor. 

First order higher degree equations solvable for x, y, p. Methods for solving higher-order 

differential equations. Basic theory of linear differential equations, Wronskian, and its 

properties. Solving a differential equation by reducing its order.  

 

Linear homogenous equations with constant coefficients, Linear non-homogenous equations, 

The method of variation of parameters, The Cauchy-Euler equation, Simultaneous differential 

equations, Total differential equations.  

 

Definition of vector, Resolution of vectors into components along three directions. Scalar and 

vector products of two and three vectors. Applications to geometry and mechanics.  

 

Continuity and differentiability of vector-valued function of one variable. Velocity and 

acceleration. Vector-valued functions of two and three variables, Gradient of scalar function, 

Divergence, Curl and their properties.  

 

References:  

 

1. S. L. Ross, Differential Equations, 3rd Ed., John Wiley and Sons, 1984. 

2. B. Spain, Vector Analysis, D.Van Nostrand Company Ltd.  

3. L. Brand, Vector Analysis, Dover Publications Inc.  

4.  Shanti Narayan, A Text Book of Vector Analysis, 19th Edn, S.Chand publishing. 

5. M. Spiegel, S.Lipschutz , D. Spellman, Vector Analysis, McGraw-Hill. 
 

 

 

 

Semester III 

 

G E N E R I C  E L E C T I V E S  [ G E - 1 ( 3 ) ]  

 

Course Name: Linear and Modern Algebra 
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Course Type: GE Course Details: GE-3 L-T-P: 5-1-0 

 

Credit: 6 

 

Full Marks: 50 

CA Marks ESE Marks 

Practical Theoretical Practical Theoretical 

…… 10 
       ....... 

40 

 
 

Course Learning Outcomes:  

(After the completion of course, the students will have ability to): 

• Understand the concepts of different types of groups, rings and field. 
• Understand the basic concepts of group actions and their applications. 

• Understand the concepts of vector spaces, sub-spaces, linear dependence and linear 

independence of a finite set of vectors.  

        
 

Definition and examples of groups, examples of abelian and non-abelian groups, the group Zn of 

integers under addition modulo n and the group U(n) of units under multiplication modulo n. Cyclic 

groups from number systems, complex roots of unity, circle group, the general linear group GLn(n,R), 

groups of symmetries of (i) an isosceles triangle, (ii) an equilateral triangle, (iii) a rectangle, and (iv) a 

square, the permutation group Sym (n), Group of quaternions. group of permutation, Normal subgroups: 

their definition, examples, and characterizations, Quotient groups. Divisor of zeros, Rings, Integral 

domain, fields.  

 

Solution of non-homogeneous system of three linear equations by matrix inversion method. Elementary 

row and column operations, rank of a matrix, row reduced echelon form and fully reduced normal form.  

Vector spaces over reals, simple examples, linear dependence and independence of a finite set of 

vectors, sub-spaces, definition and examples.  

References:  
1. John B. Fraleigh, A First Course in Abstract Algebra, 7th Ed., Pearson, 2002. 

2. M. Artin, Abstract Algebra, 2nd Ed., Pearson, 2011. 

3. Joseph A Gallian, Contemporary Abstract Algebra, 4th Ed., Narosa, 1999. 

4. George E Andrews, Number Theory, Hindustan Publishing Corporation, 1984.  

5. S. K. Mapa, Higher Algebra (Abstract and Linear), Sarat Book House.  

6. Promode Kumar Saikia, Linear Algebra With Applications, Pearson.  

7. U. M. Swamy & A. V. S. N. Murthy, Algebra: Abstract and Modern, Pearson.  

8. Ghosh & Chakravorty, Higher Algebra (Classical & Modern), U. N. Dhur & Sons Pvt. Ltd.  

 

 

Semester IV 

 

G E N E R I C  E L E C T I V E S  [ G E - 1 ( 4 ) ]  
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Full Marks: 50 

CA Marks ESE Marks 
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Course Learning Outcomes:  

(After the completion of course, the students will have ability to): 

• Understand about sets in R, sequences, series of functions and infinite series.        

 

Finite and infinite sets, examples of countable and uncountable sets. Real line, bounded sets, suprema 

and infima, completeness property of R, Archimedean property of R, intervals. Concept of cluster points 

and statement of Bolzano-Weierstrass theorem. 

 

Real Sequence, Bounded sequence, Cauchy convergence criterion for sequences. Cauchy’s theorem on 

limits, order preservation and squeeze theorem, monotone sequences and their convergence (monotone 

convergence theorem without proof). 

Infinite series. Cauchy convergence criterion for series, positive term series, geometric series, 

comparison test, convergence of p-series, Root test, Ratio test, alternating series, Leibnitz’s test(Tests 

of Convergence without proof). Definition and examples of absolute and 

conditional convergence. 

 

Sequences and series of functions, Pointwise and uniform convergence. Mn-test, M-test, Statements of 

the results about uniform convergence and integrability and differentiability of functions, Power series 

and radius of convergence. 

 
References:  

1. T. M. Apostol, Calculus (Vol. I), John Wiley and Sons (Asia) P. Ltd., 2002. 

2. R.G. Bartle and D. R Sherbert, Introduction to Real Analysis, John Wiley and Sons (Asia) 

P.Ltd.,2000. 

3. E. Fischer, Intermediate Real Analysis, Springer Verlag, 1983. 

4. K.A. Ross, Elementary Analysis- The Theory of Calculus Series- Undergraduate Texts 

In Mathematics, Springer Verlag, 2003. 

5. Richard R.Goldberg, Methods of Real Analysis, Oxford and IBH , 2012.  

6. S. N. Mukhopadhyay and A. Layek – Mathematical Analysis – Vol-I , U. N. Dhar & Sons  

Pvt. Ltd. 

7. S. N. Mukhopadhyay and S. Mitra – Mathematical Analysis – Vol-II, (U. N. Dhar & Sons. 

Pvt. Ltd.  

 

*** 
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